2015-Sustainable Industrial Processing Summit
SIPS 2015 Volume 7: Ionic Liquids & Energy Production

Editors:Kongoli F, Gaune-Escard M, Mauntz M, Rubinstein J, Dodds H.L.
Publisher:Flogen Star OUTREACH
Publication Year:2015
Pages:310 pages
ISSN:2291-1227 (Metals and Materials Processing in a Clean Environment Series)
< CD shopping page

    Electrochemical Behavior of Neodymium in Molten Salts

    Mickael Mery1; Patrick Masset1; Clemens Schmetterer1;
    1FRAUNHOFER UMSICHT, Sulzbach-Rosenberg, Germany (Deutschland);
    Type of Paper: Regular
    Id Paper: 207
    Topic: 13


    Neodymium is a lanthanide and belongs to the rare earth elements. Its implementation in current devices such as computers or LCD-screens and its utilization in green technologies such as electric cars and wind turbines increase every year. In these technologies the neodymium is incorporated in permanent magnet (Nd2Fe14B).
    Neodymium, as fission product in nuclear reactors, can be recovered from fission products by pyrochemical process. This process represents an alternative to the hydrometallurgical process (PUREX) in order to separate actinides and lanthanides.
    Neodymium, contained in Nd2Fe14B-Magnets, can be recycled using hydrometallurgical and/or pyrometallugical processes, which have some disadvantages such as a high energy demand or/and huge amounts of chemicals. An alternative method could be a selective reduction of the neodymium contained in the magnets. In order to recover the neodymium as pure metal using molten salts, the thermochemical and electrochemical properties of neodymium have to be well known. The solubility, diffusion coefficients redox potential and the interaction between neodymium and molten salts are important characteristics to obtain a successful extraction. In this paper, the electrochemical behavior of neodymium in mixed molten salts investigated by classical transient electrochemical techniques will be presented and discussed.


    Electrochemical; Electrolysis; Moltensalt; Neodymium;


    [1] D. Schüler, et al.: Study on rare earth and their recycling, Final Report for The Greens/EAF Group, Darmstadt, January 2011
    [2] D. Xiaoyue, T. E. Graedel: Global Rare Earth In-Use Stocks in NdFeB Permanent Magnets, Journal of Industrial Ecology, 15 (2011), 836-843
    [3] K. Binnemans, P. T. Jones, B. Blanpain, T. van Gerven, Y. Yongxiang, A. Walton, M. Buchert: Recycling of rare earths: a critical review, Journal of Cleaner Production, 51 (2013), 1-22
    [4] P. J. Masset, I. Löh, M. Mickael: Rückgewinnung von seltenen erden aus magnetabfällen – eine übersicht über derzeitige recyclingverfahren, Symposium Rohstoffeffizienz und Rohstoffinnovationen, (2014)
    [5] H. Yamana, A.Uehara, T. Nagai, K. Fukasawa and T. Fujii: Am/Cm separation in molten chloride melt utilizing the divalency of Am, IOP Conf. Series: Materials Science and Engineering, 9 (2010), 012069
    [6] Y. Castrillejo, M.R. Bermejo, E. Barrado, A.M. Mart&#305;nez and P. D&#305;az Arocas: Solubilization of rare earth oxides in the eutectic LiCl-KCl mixture at 450°C and in the equimolar CaCl2-NaCl melt at 550°C, Electroanalytical Chemistry, 545 (2003), 141-157
    [7] H. Yamanaa, B. Gi Park, O. Shirai, T. Fujii, A. Uehara and H. Moriyama: Electrochemically produced divalent neodymium in chloride melt, Journal of Alloys and compounds, 408-412 (2006), 66-70
    [8] H. Yamana, B. G. Park, O. Shirai, T. Fujii, A. Uehara, H. Moriyama: Electrochemically produced divalent neodymium in chloride melt, Journal of Alloys and Compounds, 408-412 (2006), 66-70
    [9] V. Smolenski, A. Novoselova, A. Osipenko, A. Maershin: Thermodynamics and separation factor of uranium from lanthanum in liquid eutectic gallium-indium alloy/molten salt system, Electrochimia Acta, 145 (2014), 81-85
    [10] R. Takagi, L. Rycerz, M. Gaune-Escard: Mixing enthalpy in the molten NdCl3-(LiCl-KCl) eutectic system, Journal of Alloys and Compounds, 257 (1997), 134-136
    [11] S. A. Kuznetsov, M. Gaune-Escard: Redox electrochemistry and formal standard redox potentials of the Eu(III)/Eu(II) redox couple in an equimolar mixture of molten NaCl-KCl, Electrochimia Acta, 46 (2001), 1101-1111
    [12] A. Uehare, K. Fukasawa, T. Nagai, T. Fujii, H. Yamana: Separation of Nd metal by using disproportionation reaction of Nd(II) in molten chlorides, Journal of Nuclear Materials, 414 (2011), 336-339
    [13] M. Gibilaro, L. Massot, P. Chamelot, P. Taxil: Study of neodymium extraction in molten fluorides by electrochemical co-reduction with aluminium, Journal of Nuclear materials, 382 (2008), 30-46
    [14] R. Zvejskova, F. Lisy, P. Soucek: Development of electrochemical separations of uranium and re elements from fluoride melts, Nuclear Energy Agency, 75 (2003), 371-381
    [15] D. K. Dysinger, J. E. Murphy: Elecrowinning of neodymium from a molten oxide fluoride electrolyte, United States department of the interior, ISSN 1066-5552
    [16] T. Nohira, S. Kobayashi, K. Kobayashi, R. Hagiwara, T. Oishi, H. Konishi: Electrochemical fromation of Nd-Ni Alloys in molten LiF-CaF2-NdF3, ECS Transactions, 33 (2010), 205-212
    [17] E. Stefanidaki, C. Hasiotis, C. Kontoyannis: Electrodeposition of neodymium from LiF-NdF3-Nd2O3 melts, Electrochimica Acta, 46 (2001), 2665-2670
    [18] P. Taxil, L. Massot, C. Nourry, M. Gibilaro, P. Chamelot, L. Cassayre: Lanthanides extraction processes in molten fluoride media: Application to nuclear spent fuel reprocessing, Journal of Fluorine Chemistry, 130 (2009), 94-101
    [19] R. Thudum, A. Srivastava, S. Nandi, A. Nagaraj, R. Shekhar: Molten salt electrolysis of neodymium: electrolyte slection and deposition mechanism, Mineral Processing and Extractive Metallurgy, 119 (2010), 88-92
    [20] M. Gibilaro, S. Bolmont, L. Massot, L. Latapie, P. Chamelot: On the use of liquid metals as cathode in molten fluorides, Journal of Electroanalytical Chemistry, 726 (2014), 84-90
    [21] C. Hamel, P. Chamelot, P. Taxil: Neodymium(III) cathodic processes in molten fluorides, Electrochimica Acta, 49 (2004), 4467-4476
    [22] T. Store, Thesis, Department of Electrochemistry, Norwegian University of Science and Technology, 1999, 22.
    [23] C. Nourry: Extraction electrochimique des lanthanides des milieu de fluorures fondus par formation d’alliages, Ph D Thesis, Laboratoire de Génie Chimique, Université Paul Sabatier-Toulouse III, Toulouse, 2007
    [24] S. P. Fusselman, J. J. Roy, D. L. Grimmett, L. F. Grantham C. L. Krueger, C. R. Nabelek, T. S. Storvick, T. Inoue, T. Hijikata, K. Kinoshita, Y. Sakamura: Thermodynamic Properties for Rare Earths and Americium in Pyropartitioning Process Solvents, Journal Electrochemical Society, 146 (1999), 2573-2580
    [25] L. Yang, R. G. Hudson: Some investigations of the Ag/AgCl in LiCl-KCl Eutectic Reference electrode, Journal Electrochemical Society, (1959), 986-990
    [26] S. Vandarkuzhali, M. Chandra, S. Ghosh, N. Samanta, S. Nedumaran, B. Prabhakara Reddy, and K. Nagarajan: Investigation on the electrochemical behavior of neodymium chloride at W, Al and Cd electrodes in molten LiCl-KCl eutectic, Electrochimica Acta, 145 (2014), 86–98

    Full Text:

    Click here to access the Full Text

    Cite this article as:

    Mery M, Masset P, Schmetterer C. Electrochemical Behavior of Neodymium in Molten Salts. In: Kongoli F, Gaune-Escard M, Mauntz M, Rubinstein J, Dodds H.L., editors. Sustainable Industrial Processing Summit SIPS 2015 Volume 7: Ionic Liquids & Energy Production. Volume 7. Montreal(Canada): FLOGEN Star Outreach. 2015. p. 75-86.