2015-Sustainable Industrial Processing Summit
SIPS 2015 Volume 7: Ionic Liquids & Energy Production

Editors:Kongoli F, Gaune-Escard M, Mauntz M, Rubinstein J, Dodds H.L.
Publisher:Flogen Star OUTREACH
Publication Year:2015
Pages:310 pages
ISBN:978-1-987820-30-0
ISSN:2291-1227 (Metals and Materials Processing in a Clean Environment Series)
CD-SIPS2015_Volume
< CD shopping page

    Density Screening of Room Temperature Ionic Liquids

    Yizhak Marcus1;
    1HEBREW UNIVERSITY, Jerusalem, Israel;
    Type of Paper: Regular
    Id Paper: 290
    Topic: 13

    Abstract:

    The density of room temperature ionic liquids (RTILs) at ambient pressure but over a temperature range can be estimated sufficiently accurately from the ionic volumes of the constituent ions with just two universal parameters. The ionic volumes of inorganic ions are well established, and those of alkyl-substituted imidazolium, pyridinium, pyrrolidinium, quaternary ammonium and phosphonium cations and sulfate anions are linear with the number of carbon atoms in the chains. The molar volumes of liquid RTILs are larger than Avogadro's number times the sum of the ionic volumes of cations and anions because of the expansion of the crystalline solids on melting and the creation of ion-sized cavities.

    Keywords:

    Density; Ion; Moltensalt;

    References:

    [1] J. A. P. Coutinho, P. J. Carvallho, and M. M. C. Oliviera: Predictive methods for the estimation of thermophysical properties of ionic liquids, RSC Advances 2 (2012) 7322-7346.
    [2] R, L. Gardas and J. A. P. Coutinho: Group contribution methods for the prediction of thermophysical and transport properties of ionic liquids, AIChE J. 55 (2009) 1274-1290.
    [3] W. Beichel, U. P. Preiss, S. P. Verevkin, T. Koslowsli, and I. Krossing: Empirical description and prediction of ionic liquids' properties with augmented volume-based thermodynamics, J. Mol. Liq. 192 (2014) 3-8.
    [4] W. Beichel, P. Eiden, and I. Krossing: Establishing consistent van der Waals volumes of polyatomic ions from crystal structures, ChemPhysChem 14 (2013) 3221-3226.
    [5] C. Ye and J. M. Shreeve: Rapid and accurate estimation of densities of room temperature ionic liquids and salts, J. Phys. Chem. B 111 (2007) 1456-1461.
    [6] J. M. Slattery, C. Daguenet, P. J. Dyson, T. J. S. Schubert, and I. Krossing: How to predict physical properties of ionic liquids: a volume-based approach, Angew. Chem. Intl. Ed. 46 (2007) 5384-5388.
    [7] K. Bica, M. Deetlefs, C. Schröder, and K. R. Seddon: Polarizabilities of alkylimidazolium ionic liquids, Phys. Chem. Chem. Phys. 15 (2013) 2703-2711.
    [8] Y. Marcus: Volumetric behavior of room temperature ionic liquids, in T. Letcher and E Wilhelm, eds., Volume Properties, RSC, Cambridge, Ch. 19 (2015) 512-525.
    [9] H. D. B. Jenkins, H. K. Roobottom, J. Passmore, and L. Glasser: Relationships among ionic lattioce energies, moleculart (formula unit) volumes, and thermochemical radii, Inorg. Chem. 38 (1999) 3609-3620.
    [10] R. L. Gardas, R. Ge, P. Goodrich, C. Hardacre, A. Hussain, and D. W. Rooney: Thermophysical properties of amino acid ionic liquids, J. Chem. Eng. Data 55 (2010) 1505-1515.
    [11] W. A. Henderson, V. G. Young Jr., W. Pearson, S. Passerini, H. C. De Long, and P. Trulove: Thermal phsase behavior of N-alkyl-N-methylpyrrolidinium and piperidinium bis(trifluoro-methylsulfonyl)imide salts, J. Phys. Condens. Matter. 18 (2006) 10377-10390.
    [12] Y. Marcus, H. B. D Jenkins, and L. Glasser: Ionic volumes: a comparison, J. Chem. Soc., Dalton Trans. (2002) 3795-3798.
    [13] H. F. D.Almeida, H. Passos, J. A. Lopes-da-Silva, A. M. Fernandes, M. G. Freire M. G., and
    [14] J. A. P. Coutinho: Thermophysical properties of five acetate based ionic liquids, J. Chem. Eng. Data 57 (2012) 3005-3013.
    [15] K. Matsumoto, T. Oka, T. Nohira, R. Hagiwara: Polymorphism of alkali bis(fluorosulfonyl) amides (M[N(SO2F)2], M = Na, K, and Cs), Inorg. Chem. 32 (2013) 568-576.
    [16] M. Marszalek,Z. Fei, D.-K. Zhu, R. Scopelliti, P. J. Dyson, S. M. Zakeeruddin, and M. Grätzel: Application of ionic liquids containing tricyanomethanide [(CN)3]– or tetracyanoborate [B(CN)4]– anions in dye-sensitized solar cells, Inorg. Chem. 50 (2011) 11561-11567.
    [17] Q. S.Liu, J. Tong, Z. C. Tan, U. Welz-Biermann, and J. Z. Yang: Density and surface tension of ionic liquid [Cnmim][PF3(CF3)3] (n = 1,3,4,5,6), J. Chem. Eng. Data 55 (2010) 2586-2589.
    [18] J. Kutuniva, R. Oilunkaniem, R. S. Laitinen, J. Asikkala, J. Kärkkäinen, and M. K. Lajunen: Synthesis and structural characterization of 1-butyl-2,3-dimethylimidazolium bromide and iodide,
    [19] Z. Naturforsch. 62B (2007) 868-870.
    [20] M. G. Bogdanov and W. Kantlehner: Simple prediction of some physical properties of ionic liquids: the residual volume approach, Z. Naturforsch. 64B (2009) 215-222.
    [21] T. Xie, W. Brockner, and M. Z. Gjikaj: New ionic liquid compounds based on tantalum pentachloride TaCl5: Synthesis, structural, and spectroscopic elucidation of the (&#956;-oxido)-chloridotantalate(V) [BMPy][TaCl6], Z. Anorg. Allgem. Chem. 636 (2010) 2633-2640.
    [22] A. Getsis and A.-V. Z. Mudring: Structural and thermal behavior of the pyrrolidinium based ionic liquid crystals [C20mpyr]Br and C12mpyr]Br, Z. Anorg. Allgem. Chem. 635 (2009) 2214-2221.
    [23] U. P. R. M. Preiss, J. M. Slattery, and I. Krossing: In silico prediction of molecular volumes, heat capacities, and temperature-dependent densities of ionic liquids, Ind. Eng. Chem. Res. 48 (2009) 2290-2296.
    [24] R. L. Gardas and J. A. P. Coutinho: Extension of the Ye and Shreeve group contribution method for density estimation of ionic liquids in a wide range of temperatures and pressures, Fluid Phase Equil. 263 (2008) 26-32.
    [25] J. Tong, Q.-S. Liu, W.-G. Xu, D.-W. Fang, and J.-Z. Yang: Estimation of physicocgemical properties of ionic liquids 1-alkyl-3-methylimidazolium chloroaluminate, J. Phys. Chem. B 112 (2008) 4381-4386.
    [26] Y. Yoshida and G. Saito: Influence of structural variations in 1-alkyl-3-methylimidazolium cation and tetrahalogenoferrate(III) anion on the physical properties of the paramagnetic ionic liquids, J. Mater. Chem. 16 (2006) 1254-1262.
    [27] T. Makino, M. Kanakubo, T. Umecky, A. Suzuki, T. Nishida, and J. Takano: Electrical conductivities, viscosities, and densities of N-methoxymethyl- and N-butyl-N-methylpyrrolidinium ionic liquids with the bis(sluorosulfonyl)amide anion, J. Chem. Eng.
    [28] Data 57 (2012) 751-755.
    [29] S. Seki, S. Tsuzuki, K. Hayamizu, Y. Umebayashi, N. Serizawa, K. Takei, and H. Miyashiro: Comprehensive refractive index property for room temperature ionic liquids, J. Chem. Eng. Data 57 (2012) 2211-2216.
    [30] S. M. Mahurin, P. C. Hillesheim, J. S. Yeary, D. Jiang, and S. Dai: High CO2 solubility, permeability and selectivity in ionic liquids with the tetracyanoborate anion, RSC Advances 2 (2012) 11813-11819.
    [31] J. P. Gutierrez, W. Meindersma, and A. B. de Haan: Binary and ternary (liquid + liquid) equilibrium for {methylcyclohexane (1) + toluene (2) + 1-hexyl-3-methylimidazolium tetracyanoborate (3)/1-butyl-3-methylimidazolium tetracyanoborate (3)}, J. Chem. Thermodyn. 43 (2011) 1673-1677.
    [32] J. O. Valderrama, W. W. Sanga, and J. A. Lazzus: critical properties, normal boiling temperature, and acentric factor of another 200 ionic liquids, Ind. Eng. Chem. Res. 47 (2008) 1318-1330.
    [33] J. Palomar, V. R. Ferro, J. S. Torrecilla, and F. Rodriguez: Density and molar volume predictions using COSMO-RS for ionic liquids. An approach to solvent design, Ind. Eng. Chem. Res. 46 (2007) 6041-6048.
    [34] M. S. Shannon, J. M. Tedstone, S. P. O. Danielsen, M. S. Hindman, A. C. Irvin, and J. E. Bara: Free volume as the basis of gas solubility and selectivity in imidazolium-based ionic liquids, Ind. Eng. Chem. Res. 51 (2012) 5565-5576.
    [35] T. G. Coker, J. Ambrose, and G. J. Janz: Fusion properties of some ionic quaternary ammonium compounds, J. Am. Chem. Soc. 92 (1970) 5293-5297.
    [36] W. Beichel, U. P. Preiss, B. Benkmil, G. Steinfeld, P. Eiden, A. Kraft, and I. Krossing: Temperature dependent crystal structure analysis and ion volume determinations of organic salts,
    [37] Z. Anorg. Allgem, Chem. 639 (2013) 2153-2161.
    [38] W. Beichel, Y. Yu, G. Dlubek, R. Krause-Rehberg, J. Pionteck, D. Pfefferkorn, S. Bulut,
    [39] D. Bejan, C. Friedrich, and I. Krossing: Free volume in ionic iquids: a connection of experimentally accessible observables from PALS and PVT experiments with the molecular strycture from XRD data, Phys. Chem. Chem. Phys. 15 (2013) 8821-8830.
    [40] T. R. J. Griffiths: Densities of some molten organic quaternary halides, J. Chem. Eng. Data 8 (1963) 568-569.
    [41] C. Cadena and E. J. Maginn: Molecular simulation study of some thermophysical and transport properties of triazolium-based ionic liquids, J. Phys. Chem. B 110 (2006) 18026-18039.
    [42] G. Drake T. Hawkins, A. Brand, L. Hall, M. Mckay, A. Vij, and I. Ismail: Energetic, low-melting salts of simple heterocycles, Propell. Explos. Pyrothech. 28 (2003) 174-180.
    [43] M.-M. Huang, S. Bulut, I. Krossing, and H. Weingärtner: Communication: Are hydrodynamic models suited for describing the reorientational dynamics of ions in ionic liquids? A case study of methylimidazolium tetra(hexafluoroisopropoxy)aluminates, J. Chem. Phys. 133 (2010) 101101/1-4.
    [44] S. Bulut S., P. Klose, M.-M. Huang, H. Weingärtner, P. J. Dyson, G. Laurenczy, C. Friedrich, J. Menz, K. Kümmerer, and I. Krossing: synthesis of room-temperature ionic liquids with the weakly coordinating [Al(Orf)4]-anion (rf = C(H)(CF3)2) and the determination of their principal physical properties, Chem. Eur. J. 16 (2010) 13139-13140.

    Full Text:

    Click here to access the Full Text

    Cite this article as:

    Marcus Y. Density Screening of Room Temperature Ionic Liquids. In: Kongoli F, Gaune-Escard M, Mauntz M, Rubinstein J, Dodds H.L., editors. Sustainable Industrial Processing Summit SIPS 2015 Volume 7: Ionic Liquids & Energy Production. Volume 7. Montreal(Canada): FLOGEN Star Outreach. 2015. p. 107-118.