2015-Sustainable Industrial Processing Summit
SIPS 2015 Volume 8: Composite & Ceramic, Quasi-crystals and Nanomaterials

Editors:Kongoli F, Pech-Canul M, Kalemtas A, Werheit H
Publisher:Flogen Star OUTREACH
Publication Year:2015
Pages:300 pages
ISSN:2291-1227 (Metals and Materials Processing in a Clean Environment Series)
< CD shopping page

    Electrochemical Properties of Sn-Cu-C Core-Shell Nanocomposite for Lithium Ion Batteries

    Hasan Algul1; Mahmud Tokur1; Mehmet Uysal2; Tugrul Cetinkaya1; Ahmet Alp1; Hatem Akbulut1;
    Type of Paper: Regular
    Id Paper: 392
    Topic: 18


    In this study, the multi-step design of nano Sn-Cu-C core–shell composite for high stability and long life lithium ion battery electrodes has been introduced. The core–shell Sn-Cu composite was successfully synthesized via electroless copper coating and subsequently a thin carbon layer was coated on the surface of Sn-Cu core-shell structure by microwave hydrothermally synthesis method. The surface morphology of the produced core-shell Sn-Cu-C composite powders was characterized using transmission electron microscopy (TEM). X-ray diffraction (XRD) analysis was applied to investigate the structure of the Sn-Cu-C composite powders. The electrochemical performances of the electrodes have been investigated in the voltage range of 0V to 2.0 V at the constant current of 200 mA g-1. Eventually, the produced carbon coated Sn-Cu core-shell composite electrode showed 451 mAh/g discharge capacity after 30 cycles due to buffering effect of copper and thin carbon layer on the surface of tin powders.


    Battery; Carbon; Coatings; Li-Ion; Nanocomposites; Nanoparticles; Nanopowder; Nanoscience; Nanotechnology; Synthesis;


    [1] Zhang R, Lee JY, Liu ZL (2002) Pechini process-derived tin oxide and tin oxide graphite composites for lithium-ion batteries. J. Power Sources 112:596-605. doi:10.1016/S0378-7753(02)00483-4
    [2] Shin NR, Kang YM, Song MS, Kima DY, Kwon HS (2009) Effects of Cu substrate morphology and phase control on electrochemical performance of Sn–Ni alloys for Li-ion battery. J. Power Sources 186:201–205. doi:10.1016/j.jpowsour.2008.09.095
    [3] Nam DH, Kim RH, Han DW, Kwon HS (2012) Electrochemical performances of Sn anode electrodeposited on porous Cu foam for Li-ion batteries. Electrochim. Acta 66:126-132. doi:10.1016/j.electacta.2012.01.084
    [4] Valvo M, Lafont U, Simonin L, Kelder EM (2007) Sn–Co compound for Li-ion battery made via advanced electrospraying. J. Power Sources 174:428-434. doi:10.1016/j.jpowsour.2007.06.156
    [5] Guo ZP, Zhao ZW, Liu HK, Dou SX (2005) Electrochemical lithiation and de-lithiation of MWNT–Sn/SnNi nanocomposites. Carbon 43:1392–1399. doi:10.1016/j.carbon.2005.01.008
    [6] Hassoun J, Panero S, Mulas G, Scrosati B (2007) An electrochemical investigation of a Sn–Co–C ternary alloy as a negative electrode in Li-ion batteries. J. Power Sources 171:928–931. doi:10.1016/j.jpowsour.2007.06.067
    [7] Mao O, Dunlap RA, Dahn JR (1999) Mechanically Alloyed Sn&#8208;Fe(&#8208;C) Powders as Anode Materials for Li Ion Batteries: I. The Sn2Fe-C&#8201; System. J. Electrochem. Soc. 146:405-413. doi:10.1149/1.1391622
    [8] Mao O, Dahn JR (1999) Mechanically Alloyed Sn-Fe(C) Powders as Anode Materials for Li Ion Batteries: III. Sn2Fe&#8201;:&#8201;SnFe3&#8201;C&#8201; Active/Inactive Composites. J. Electrochem. Soc. 146:423-427. doi:10.1149/1.1391624
    [9] Noh M, Kwon Y, Lee H, Cho J, Kim Y, Kim MG (2005) Amorphous Carbon-Coated Tin Anode Material for Lithium Secondary Battery. Chem. Mater. 17:1926-1929. doi:10.1021/cm0481372
    [10] Sakaki T, Shibata M, Miki T, Hirosue H, Hayasshi N (1996) Reaction model of cellulose decomposition in near-critical water and fermentation of products. Bioresour. Technol. 58:197-202. doi:10.1016/S0960-8524(96)00099-5
    [11] Wang Q, Li H, Chen L, Haung X (2002) Novel spherical microporous carbon as anode material for Li-ion batteries, J. Solid State Ionics 152:43-50. doi:10.1016/S0167-2738(02)00687-2
    [12] Wang Y, Li H, He P, Hosono E, Zhou H (2010) Nano active materials for lithium-ion batteries. Nanoscale 2:1294-1305. doi:10.1039/C0NR00068J
    [13] Dimov N, Kugino S, Yoshio M (2003) Carbon-coated silicon as anode material for lithium ion batteries: advantages and limitations. Electrochimica Acta 48:1579-1587. doi:10.1016/S0013-4686(03)00030-6
    [14] Li W, Yang R, Wang X, Wang T, Zheng J, Li X (2013) Intercalated Si/C films as the anode for Li-ion batteries with near theoretical stable capacity prepared by dual plasma deposition. J. Power Sources 221:242–246. doi:10.1016/j.jpowsour.2012.08.042
    [15] Liu S, Li Q, Chen Y, Zhang F (2009) Carbon-coated copper–tin alloy anode material for lithium ion batteries. Journal of Alloys and Compounds 478:694–698. doi:10.1016/j.jallcom.2008.11.159
    [16] Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T (1997) Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage. Material. Science 276:1395-1397. doi:10.1126/science.276.5317.1395
    [17] Yu Y, Gu L, Wang C, Dhanabalan A, Aken PA, Maier J (2009) Encapsulation of Sn@carbon Nanoparticles in Bamboo-like Hollow Carbon Nanofibers as an Anode Material in Lithium-Based Batteries. Angew. Chem. Int. Ed. 48:6485–6489. doi:10.1002/anie.200901723
    [18] Kim IC, Byun D, Lee S, Lee JK (2006) Electrochemical characteristics of copper silicide-coated graphite as an anode material of lithium secondary batteries. Electrochimica Acta 52:1532–1537. doi:10.1016/j.electacta.2006.02.055
    [19] Zenga Z, Zhaoa H, Wanga J, Lva P, Zhanga T, Xiaa Q (2014) Nanostructured, Fe3O4@C as anode material for lithium-ion batteries. Journal of Power Sources 248:15-21. doi:10.1016/j.jpowsour.2013.09.063

    Full Text:

    Click here to access the Full Text

    Cite this article as:

    Algul H, Tokur M, Uysal M, Cetinkaya T, Alp A, Akbulut H. Electrochemical Properties of Sn-Cu-C Core-Shell Nanocomposite for Lithium Ion Batteries. In: Kongoli F, Pech-Canul M, Kalemtas A, Werheit H, editors. Sustainable Industrial Processing Summit SIPS 2015 Volume 8: Composite & Ceramic, Quasi-crystals and Nanomaterials. Volume 8. Montreal(Canada): FLOGEN Star Outreach. 2015. p. 137-144.