2017-Sustainable Industrial Processing Summit
SIPS 2017 Volume 1. Barrios Intl. Symp. / Non-ferrous Smelting & Hydro/Electrochemical Processing

Editors:Kongoli F, Palacios M, Buenger T, Meza JH, Delgado E, Joudrie MC, Gonzales T, Treand N
Publisher:Flogen Star OUTREACH
Publication Year:2017
Pages:264 pages
ISBN:978-1-987820-61-4
ISSN:2291-1227 (Metals and Materials Processing in a Clean Environment Series)
CD-SIPS2017_Volume1
CD shopping page

    Recovery of Rare Earths Elements from Neodymium Magnets using Solvent Extraction: the Effect of Diluents

    Marino Gergoric1; Teodora Retegan1;
    1CHALMERS UNIVERSITY OF TECHNOLOGY, Gothenburg, Sweden;
    Type of Paper: Regular
    Id Paper: 72
    Topic: 11

    Abstract:

    Rare earth elements (REEs) have become vital components in a wide range of industrial applications. The demand for the REEs has grown significantly in the last few decades.Today, despite lower prices than in 2011, they are classified as the highest supply risk elements in the EU; thus new incentives for recycling the REEs out of electronic scrap were brought forth. End-of-life neodymium magnets are a viable source for the recovery of some REEs. Although mainly iron alloys, these materials contain neodymium, dysprosium and small admixtures of praseodymium and terbium. Leaching followed by solvent extraction of the REEs out of the leachate is an attractive and efficient way of recycling these elements out of end-of-life neodymium magnets. The issues that are encountered along this recycling path is the separation of the REEs from the other elements that are dissolved with the REEs into the leachate and achieving high separation factors between the REEs from each other. Extracting agents such as D2EHPA (di(2-ethylhexyl)phosphoric acid) and TODGA (tetraoctyl diglycolamide) have been previously used for achieving good separation of the REEs under specific extraction conditions. This research has focused on the development and optimization of REE extraction from real commercial waste sources, the nitric acid and sulfuric acid media leachates of the neodymium magnet waste, using TODGA and D2EHPA as extracting agents, respectively. Selective REE extraction from the solution with minimal or no co-extraction of other elements in the leachate is hoped to provide a novel route to a commercially viable route to recyclable REE products. The composition of the organic phase was investigated in order to study the effect of the diluent on the overall extraction process, a well-known optimization parameter, however infrequently used. The effect of the diluent on the separation factors was also discussed as well as some characteristics of the aqueous phase on the overall extraction process. The named extractants were used at various concentrations in different diluents like solvent 70, hexane, octane, cyclohexanone, toluene, 1-octanol and chloroform. Both extractants showed good selectivity concerning the extraction of the REEs out of the neodymium magnet waste leachates.

    Keywords:

    Hydrometallurgy; RareEarth; Recovery; Recycling; Sustainable;

    Full Text:

    Click here to access the Full Text

    Cite this article as:

    Gergoric M and Retegan T. (2017). Recovery of Rare Earths Elements from Neodymium Magnets using Solvent Extraction: the Effect of Diluents. In Kongoli F, Palacios M, Buenger T, Meza JH, Delgado E, Joudrie MC, Gonzales T, Treand N (Eds.), Sustainable Industrial Processing Summit SIPS 2017 Volume 1. Barrios Intl. Symp. / Non-ferrous Smelting & Hydro/Electrochemical Processing (pp. 261-262). Montreal, Canada: FLOGEN Star Outreach