2017-Sustainable Industrial Processing Summit
SIPS 2017 Volume 5. Marquis Intl. Symp. / New and Advanced Materials and Technologies

Editors:Kongoli F, Marquis F, Chikhradze N
Publisher:Flogen Star OUTREACH
Publication Year:2017
Pages:590 pages
ISBN:978-1-987820-69-0
ISSN:2291-1227 (Metals and Materials Processing in a Clean Environment Series)
CD-SIPS2017_Volume1
CD shopping page

    Products of Activation of Hydrolytic Lignin: Prospects of Application

    Yury Nikolenko1; Denis P. Opra2; Aleksander K. Tsvetnikov2; Aleksander A. Sokolov2; Aleksander Yu. Ustinov2; Albert M. Ziatdinov2; Sergey L. Sinebryukhov2; Valery G. Kuryavyi2; Sergey V. Gnedenkov2;
    1INSTITUTE OF CHEMISTRY FEB RAS, Vladivostok, Russian Federation; 2, , ;
    Type of Paper: Regular
    Id Paper: 264
    Topic: 43

    Abstract:

    The hydrolytic lignin (HL) and its activated forms (AHL) were tested as active components of lithium power sources. The results of galvanostatic discharge of lithium electrochemical systems made on the basis of HL and AHL demonstrate the practical significance of thermal treatment of lignin. In particular, in the voltage range 0.5 – 3 V, the specific capacity increases from 190 mA·h/g (HL) to 265 mA·h/g (AHL annealed up to 350 С), 465 mA·h/g (AHL annealed up to 600 С), and 845 mA·h/g (AHL annealed up to 1000 С). One of the reasons for this could the increase of the electrical conductivity of the material. Also, fluorinated AHL samples were tested. The fluorinated AHL-1000 with semi-ionic carbon-fluorine bonds shows higher voltage (≈ 2.4 V) at the initial stage of discharge.

    Keywords:

    Nanomaterials; New and advanced materials;hydrolytic lignin, activated hydrolytic lignin, lithium battery, organic electrode material, fluorinated lignin

    References:

    [1] L.A.M. Nevarez, L.B. Casarrubias, A. Celzard, V. Fierro, V.T. Munoz, A.C. Davila, J.R.T. Lubian, G.G. Sanchez: Biopolymer-based Nanocomposites: Effect of Lignin Acetylation in Cellulose Triacetate Films, Sci. Technol. Adv. Mater., 12 (2011), 1-16.
    [2] I.V. Gribkov: The Chemical Composition and Structure of Technical Hydrolytic Lignin, Dissertation for doctor degree on chemical science, 2008, St.-Petersburg, PSFTA, 142 p. (in Russian).
    [3] U.P. Agarwal, R.S Reiner: Near-IR Surfaceenhanced Raman Spectrum of Lignin, J. Raman Spectrosc., 40 (2009), 1527-1534.
    [4] D.P. Opra, S.V. Gnedenkov, S.L. Sinebryukhov, A.K. Tsvetnikov, V.I. Sergienko: High energy lithium batteries based on lignin, Bull Russ Acad Sci Chem 2, VI (2012) 111-116 (in Russian).
    [5] J.M.. Rosas, R. Berenruer, M. J. Valero-Romero, J. Rodriguez-Mirasol and T. Cordero: Frontiers in Materials | Carbon-Based Materials. 2014.
    [6] S.S. Bukalov, L.A.Mikhalitzin, Ua.V. Zubavitchus., L.A. Leytes., Yu.N. Novikov: Investigation of the Structure of Graphite and Other sp Carbon Materials by Raman Microscopy and X-ray Diffraction, Ross. Khim. Zh. (Zh. Ross. Khim. O-va im D.I. Mendeleeva) I (2006), 83-91. (in Russian)
    [7] T. Jawhari, A. Roid and J. Casado: Raman-Spectroscopic Characterization of some Commercially Available Carbon-Black Materials, Carbon, 33 (1995), 1561-1565.
    [8] A.C. Ferrari and J. Robertson: Interpretation of Raman Spectra of Disordered and Amorphous Carbon, Physical Review B, 61 (2000), 14095–14107.
    [9] F. Tuinstra, J.L. Koenig: Raman Spectrum of Graphite, J. Phys. Chem., 53 (1970), 1126-1130.
    [10] Yu.M. Nikolenko and A.M. Ziatdinov: Nanographite Films: Structure and Properties, Solid St. Phenomena, 247 (2016), 17-23
    [11] L. Zhao, W. Wang, A. Wang, K. Yuan, S. Chen, Y. Yang: A Novel Polyquinone Cathode Material for Rechargeable Lithium Batteries, J. Power Sources, 233 (2013), 23–27.
    [12] W.A. Schalkwijk, B. Scrosati, Advances in lithium-ion batteries, 2002, Berlin: Springer science+business media, 513 p.
    [13] Takeshi Ogasawara, Aurelie De´bart, Michael Holzapfel, Petr Nova´k, Peter G. Bruce: Rechargeable Li2O2 Electrode for Lithium Batteries, J. Am. Chem. Soc., 128 (2006), 1390-1393
    [14] Bruno Scrosati, Jürgen Garche: Lithium Batteries: Status, Prospects and Future, Journal of Power Sources, 195 (2010), 2419–2430
    [15] N.V. Korovin, A.M. Skundin, Chemical current sources, 2003, M.: MEI.. 740 p. (in Russian).
    [16] D. Linden, T.B. Reddy, Handbook of batteries, 2002, NY: McGraw-Hill, 1450 p.

    Full Text:

    Click here to access the Full Text

    Cite this article as:

    Nikolenko Y, P. Opra D, K. Tsvetnikov A, A. Sokolov A, Yu. Ustinov A, M. Ziatdinov A, L. Sinebryukhov S, G. Kuryavyi V, V. Gnedenkov S. (2017). Products of Activation of Hydrolytic Lignin: Prospects of Application. In Kongoli F, Marquis F, Chikhradze N (Eds.), Sustainable Industrial Processing Summit SIPS 2017 Volume 5. Marquis Intl. Symp. / New and Advanced Materials and Technologies (pp. 545-550). Montreal, Canada: FLOGEN Star Outreach