2017-Sustainable Industrial Processing Summit
SIPS 2017 Volume 5. Marquis Intl. Symp. / New and Advanced Materials and Technologies

Editors:Kongoli F, Marquis F, Chikhradze N
Publisher:Flogen Star OUTREACH
Publication Year:2017
Pages:590 pages
ISSN:2291-1227 (Metals and Materials Processing in a Clean Environment Series)
CD shopping page

    A Theoretical Study of Copper Sulfide Nanoalloy Clusters: Density Functional Approach

    Tanmoy Chakraborty1;
    Type of Paper: Keynote
    Id Paper: 290
    Topic: 43


    A search of alternative energy resources is one of the most popular topics of modern scientific research. Recently, transition metal chalcogenide clusters have gained considerable importance due to their potential applications in the field of energy conversion, storage, and optoelectronics etc. Among them, the compounds formed between Cu and S are extensively used in technological and strategic industries, including thermoelectric cooling materials, solar cells, clean-energy sectors, nonlinear optical materials, lithium ion batteries, gas sensors, nanoscale switches, photocatalysts, supercapacitors, petrochemicals, pharmaceuticals etc. Nano clusters of Copper sulfides (CuS) have paramount importance due to its significant adsorption property and non-toxic behavior. In this analysis, nanoalloy clusters of (CuS)n; (n=1-8) have been theoretically analyzed in terms of Conceptual Density Functional Theory (CDFT) based descriptors, aiming to explore its electronic and other properties. 3d modeling and structural optimization of all the compounds have been performed invoking Gaussian 03 within Density Functional Theory framework. Global DFT based descriptors have been computed for ground state configurations and low-lying isomers of (CuS)n clusters. Computed HOMO-LUMO gaps, lying in the range of 1.25 – 3.53 eV, indicate that (CuS)n clusters may be utilized as renewable energy sources specially in photocatalysis and solar cell applications. A statistical correlation has been established between electronic and photo-catalytic properties of copper-sulfide clusters with their computational counterparts. The close agreement between experimental and computed data establishes efficacy of our analytical approach.


    Nanomaterials; New and advanced materials; New and advanced technology;


    [1] J. Kundu and D. Pradhan, New J. Chem., 37 (2013), 1470.
    [2] M. Antoniadou, V. M. Daskalaki, N. Balis, D. I. Kondarides, C. Kordulis and P. Lianos, Appl. Catal. B, 107 (2011), 188.
    [3] C. H. Lai, M. Y. Lu and L. J. Chen, J. Mater. Chem., 22 (2012), 19.
    [4] M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara and B. A. Korgel, J. Am. Chem. Soc., 130 (2008), 16770.
    [5] J. S. Steckel, J. P. Zimmoler, S. C.-Sullivan, N. E. Stott, V. Bulovic and M. G. Bawendi, Angew. Chem., Int. Ed., 43 (2004), 2154.
    [6] Y. Justo, B. Goris, J. S. kamal, P. Geiregat, S. Bals and Z. Hens, J. Am. Chem. Soc., 134 (2012), 5484.
    [7] Y. Zhao and C. Burda, Energy Environ. Sci., 5 (2012), 5564.
    A. A. Sagade, R. Sharma and I. Sulaniya, J. Appl. Phys., 105 (2009), 043701-1.
    [8] T. Sakamoto, H. Sunamura, H. Kawuara, T. Hasegawa, T. Nakayama and M. Aono, Appl. Phys. Lett., 82 (2003), 3032.
    [9] E. Ramli, T. B. Rauchfuss and C. L. Stern, J. Am. Chem. Soc., 112 (1990), 4043.
    [10] L. Reijnen, B. Meester, A. Goossens and J. Schoonman, Chem. Vap. Deposition, 9 (2003), 15.
    [11] M. C. Lin and M. W. Lee, Electrochem. Commun., 13 (2011), 1376.
    [12] Y. Wu, C. Wadia, W. Ma, B. Sadtler and A. P. Alivisatos, Nano Lett., 8 (2008), 2251.
    [13] T. Sakamoto, H. Sunamura, H. Kawaura, T. Hasegawa, T. Nakayama and M. Aono, Appl. Phys. Lett., 82 (2003), 3032.
    [14] O. J. J.-Sanchez et al., Chem. Phys. Lett., 570 (2013), 132.
    [15] R. Ferrando, J. Jellinek and R. L. Johnston, Chem. Rev., 108 (2008), 845.
    [16] N. Sounderya and Y. Zhang, Recent Pat. Biomed. Eng., 1 (2008), 34.
    [17] O. V. J. Salata, Nanobiotechnology, 2 (2004), 3155.
    [18] W. He et al., Chem. Mater., 22 (2010), 2988.
    [19] H. –J. Freund, Surf. Sci., 500 (2002), 271.
    [20] J. K. Norskov, T. Bligaard, J. Rossmaisi and C. H. Christensen, Nat. Chem., 1 (2009), 37.
    A. Henglein, J. Phys. Chem., 97 (1993), 5457.
    [21] S. C. Davis and K. J. Klabunde, Chem. Rev., 82 (1982), 153.
    [22] L. N. Lewis, Chem. Rev., 93 (1993), 2693.
    [23] H. Y. Oderji and H. Ding, Chem. Phys., 388 (2011), 23.
    [24] F. Baletto and R. Ferrando, Rev. Mod. Phys., 77 (2005), 371.
    [25] M. Page, O. Niitsoo, Y. Itzhaik, D. Cahen and G. Hodes, Energy Environ. Sci., 2 (2009), 220.
    [26] Y. Zhao, H. Pan, Y. Lou, X. Qiu, J. Zhu and C. Burda, J. Am. Chem. Soc.,131 (2009), 4253.
    [27] P. V. Q.-Ramirez et al., Beilstein J. Nanotechnol., 5 (2014), 1542.
    [28] P. Leidinger, R. Popescu, D. Gerthsen, H. Lunsdorf and C. Feldmann, Nanoscale, 3 (2011), 2544.
    [29] M. T. S. Nair, L. Guerrero and P. K. Nair, Semicond. Sci. Technol., 13 (1998), 1164.
    [30] Grozdanov and M. Najdoski, Solid State Chem., 114 (1995), 469.
    [31] L. Chen, Y. D. Xia, X. F. Liang, K. B. Yin, J. Yin, Z. G. Liu and Y. Chen, Appl. Phys. Lett., 91, 073511 (2007).
    [32] C. –G. Li, Y. –Q. Yuan, Y.-F. Hu, J. Zhang, Y.-N. Tang and B. –Z. Ren, Comput. Theor. Chem., 1080 (2016), 47.
    [33] C. Ratanatawanate, A. Bui, K. Vu and K. J. Balkus, J. Phys. Chem. C, 115 (2011), 6175.
    [34] Zhang, J. Yu, Y. Zhang, Q. Li and J. R. Gong, Nano Lett., 11 (2011), 4774.
    [35] O. J. Wacker, R. Kummel and E. K. U. Gross, Phys. Rev. Lett.,73 (1994), 2915.
    [36] B. Gyorffy, J. Staunton and G. Stocks (ed., E. Gross and R. Dreizler), Fluctuations in density functional theory: random metallic alloys and itinerant paramagnets, p. 461, Plenum, NY (1995).
    [37] R. Car and M. Parrinello, Phys. Rev. Lett., 55 (1985), 2471.
    [38] M. Koskinen, P. Lipas, M. Manninen, Nucl. Phys. A, 591 (1995), 421.
    [39] R. G. Parr and W. Yang, Annu. Rev. Phy. Chem., 46 (1995), 701.
    [40] W. Kohn, A. D. Becke and R. G. Parr, J. Phys. Chem., 100 (1996), 12974.
    [41] T. Ziegler, Chem.Rev., 91 (1991), 651.
    [42] R. G. Parr and W. Yang, Density functional theory of atoms and molecules, Oxford, University Press, Oxford (1989).
    [43] H. Chermette, J. Comput. Chem., 20 (1999), 129.
    [44] P. Geerlings, F. D. Proft and W. Langenaeker, Chem. Rev. Washington, D.C., 103 (2003), 1793.
    [45] P. Geerlings and F. D. Proft, Int. J. Mol. Sci., 3 (2002), 276.
    [46] P. Ranjan, A. Kumar and T. Chakraborty, (ed., G. M. Mishra), Environmental Sustainability: Concepts, Principles, Evidences and Innovations, p. 239, Excellent Publishing House, New Delhi (2014).
    [47] P. Ranjan, S. Venigalla, A. Kumar and T. Chakraborty, (ed., T. Chakraborty and L. Ledwani), Research Methodology in Chemical Sciences: Experimental and Theoretical Approaches, p. 337, Apple Academic Press, USA (2016).
    [48] P. Ranjan, S. Dhail, S. Venigalla, A. Kumar, L. Ledwani and T. Chakraborty, Mat. Sci.- Pol., 33 (2015), 719.
    [49] P. Ranjan, S. Venigalla, A. Kumar and T. Chakraborty, New Front. Chem., 23 (2014), 111.
    [50] S. Venigalla, S. Dhail, P. Ranjan, S. Jain and T. Chakraborty, New Front. Chem., 23 (2014), 123.
    [51] P. Ranjan, A. Kumar and T. Chakraborty, AIP Conf. Proc., 1724 (2016), 020072.
    [52] P. Ranjan, A. Kumar and T. Chakraborty, Mat. Today Proc., 3 (2016), 1563.
    [53] Gaussian 03, Revision C.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT (2004).
    [54] H. Xiao, J. T. Kheli and W. A. Goddard III, J. Phys. Chem. Lett., 2 (2011), 212.
    [55] R. G. Parr, L. V. Szentpaly, S. Liu, J. Am. Chem. Soc., 121 (1999), 1922.

    Full Text:

    Click here to access the Full Text

    Cite this article as:

    Chakraborty T. (2017). A Theoretical Study of Copper Sulfide Nanoalloy Clusters: Density Functional Approach. In Kongoli F, Marquis F, Chikhradze N (Eds.), Sustainable Industrial Processing Summit SIPS 2017 Volume 5. Marquis Intl. Symp. / New and Advanced Materials and Technologies (pp. 578-584). Montreal, Canada: FLOGEN Star Outreach