2018-Sustainable Industrial Processing Summit
SIPS2018 Volume 2. Amatore Intl. Symp. / on Electrochemistry for Sustainable Development

Editors:F. Kongoli, H. Inufasa, M. G. Boutelle , R. Compton, J.-M. Dubois, F. Murad
Publisher:Flogen Star OUTREACH
Publication Year:2018
Pages:216 pages
ISBN:978-1-987820-84-3
ISSN:2291-1227 (Metals and Materials Processing in a Clean Environment Series)
CD-SIPS2018_Volume1
CD shopping page

    Electrochemical Activation of Carbon Dioxide for the Synthesis of Chemicals

    Christian Amatore1; Alessandro Galia2; Onofrio Scialdone2;
    1CNRS & PSL, FRENCH ACADEMY OF SCIENCES, Paris, France; 2UNIVERSITY OF PALERMO, Palermo, Italy;
    Type of Paper: Regular
    Id Paper: 63
    Topic: 47

    Abstract:

    To curb the negative effect of carbon dioxide as a greenhouse gas, an interesting approach is the utilization of Carbon Capture and Conversion (CCC) methodologies. These recycling technologies are focused on the use of CO<sub>2</sub> waste as a feedstock for the production of industrially relevant chemicals. In the past years, increasing attention has been devoted to the electrochemical conversion of CO<sub>2</sub>, which would combine the utilization of excess electric energy from intermittent renewable sources with the selective conversion of CO<sub>2</sub> into added value products. Furthermore, it would be possible, in order to reduce the costs, to use the excess of the daily produced electricity, not matching actual demand energy, that is usually lost or not properly used. Researches have shown that several products, including carbon monoxide, formic acid, methane, methanol, ethylene and oxalic acid, can be obtained by this process. Furthermore, it has been shown that carbon dioxide can be introduced in the backbone of other molecules, generating fine chemicals with high economic value, such as anti-inflammatory drugs, by cathodic reduction in aprotic solvents
    In this work, various routes for the electrochemical conversion of carbon dioxide will be presented and discussed from both a scientific, technical and economic point of view, such as the synthesis of formic acid in water (in conventional and pressurized cells) or the electrocarboxylation of aromatic ketones and benzyl chlorides in organic solvents, in order to illustrate the current scenario.

    Keywords:

    Activation of small inert molecules; Electrochemistry; Molecular electrochemistry;

    References:

    [1] S. Sabatino, A. Galia, G. Saracco, O. Scialdone, Development of an electrochemical process for the simultaneous treatment of wastewater and the conversion of carbon dioxide to higher value products, ChemElectroChem 4 (1), 150-159, 2017.
    [2] O. Scialdone, A. Galia, G.L. Nero, F. Proietto, S. Sabatino, B. Schiavo, Electrochemical reduction of carbon dioxide to formic acid at a tin cathode in divided and undivided cells: effect of carbon dioxide pressure and other operating parameter, Electrochimica Acta 199, 332-341, 2016

    Cite this article as:

    Amatore C, Galia A, Scialdone O. (2018). Electrochemical Activation of Carbon Dioxide for the Synthesis of Chemicals. In F. Kongoli, H. Inufasa, M. G. Boutelle , R. Compton, J.-M. Dubois, F. Murad (Eds.), Sustainable Industrial Processing Summit SIPS2018 Volume 2. Amatore Intl. Symp. / on Electrochemistry for Sustainable Development (pp. 47-48). Montreal, Canada: FLOGEN Star Outreach