2022-Sustainable Industrial Processing Summit
SIPS2022 Volume 6 Macdonald Intl. Symp. Corrosion and Surface & Interface Engineering Coatings for Extreme Environments

Editors:F. Kongoli, R. Singh, F. Wang
Publisher:Flogen Star OUTREACH
Publication Year:2022
Pages:91 pages
ISBN:978-1-989820-44-5(CD)
ISSN:2291-1227 (Metals and Materials Processing in a Clean Environment Series)
CD-SIPS2022_Volume1
CD shopping page

    Designing High Temperature Protective Bondcoat for Ni-base Single Crystal Superalloys

    Zebin Bao1; Shenglong Zhu1; Fuhui Wang2;
    1INSTITUTE OF METAL RESEARCH, CHINESE ACADEMY OF SCIENCES, Shenyang, China; 2NORTHEASTERN UNIVERSITY, Shenyang, China;
    Type of Paper: Regular
    Id Paper: 216
    Topic: 66

    Abstract:

    To meet the sustaining request of enhancing thrust-load ratio, single crystal (SX) superalloy, film cooling and thermal barrier coating system (TBCs) have been perspectively utilized in advanced areo engines. Usually, the coating system consists of an oxidation resistant bondcoat and a heat resistant top coat. During service of SX superalloy components at high temperature, the element interdiffusion between bondcoat and superalloy substrate may instigate serious deterioration of mechanical property (e.g., creep resistance and rupture life) of SX superalloy by forming topologically-close-packed (TCP) phases and second reaction zone (SRZ) [1]. Another impact of such interdiffusion is the loss of beneficial element and undesirable oxidation of refratory elements at surface [2]. Thus, to inhibit or mitigate the interdiffusion is one of the key points to design protective bondcoat for Ni-base SX superalloys [3]. In this study, a Re-base diffusion barrier (DB) has been sucessfully incorporated between the state-of-the-art bondcoat of (Ni,Pt)Al and the Ni-base SX superalloy. In contrast to normal (Ni,Pt)Al coating, the coating with Re-base DB showed better oxidation resistance and less interdiffusion, which further resulted in thinner formation of SRZ and TCP precipitates. Mechanisms responsible for the enhanced performance during the oxidation tests will be intensively discussed.

    Keywords:

    corrosion Engineering; alloy corrosion; PtAl coating; oxidation; interdiffusion

    References:

    [1] D.K. Das, K.S. Murphy, S. MA, T.M. Pollock, Formation of secondary reaction zones in diffusion aluminide coated Ni-base single-crystal superalloys containing ruthenium, Metall. Mater. Trans. A 39 (2008) 1647–1657.
    [2] N. D. Souza, D. Welton, G.D West, I.M. Edmonds, On the roles of oxidation and vaporization in surface micro-structural instability during solution heat treatment of Ni-base superalloys, Metall. Mater. Trans. A 45 (2014) 5968–5981.
    [3] C.A. Guo, W. Wang, Y.X. Cheng, S.L. Zhu, F.H. Wang, Yttria partially stabilised zirconia as diffusion barrier between NiCrAlY and Ni-base single crystal René N5 superalloy, Corros. Sci. 94 (2015) 122–128.

    Cite this article as:

    Bao Z, Zhu S, Wang F. (2022). Designing High Temperature Protective Bondcoat for Ni-base Single Crystal Superalloys. In F. Kongoli, R. Singh, F. Wang (Eds.), Sustainable Industrial Processing Summit SIPS2022 Volume 6 Macdonald Intl. Symp. Corrosion and Surface & Interface Engineering Coatings for Extreme Environments (pp. 85-86). Montreal, Canada: FLOGEN Star Outreach