In Honor of Nobel Laureate Prof. Ferid Murad

Abstract Submission Open! About 500 abstracts submitted from about 60 countries

Featuring 9 Nobel Laureates and other Distinguished Guests

Abstract Submission

Mauro Ferrari

University of Washington, Seattle

Transport Oncophysics And Silicon-based Medicine
Intl. Symp. on Technological Innovations in Medicine for Sustainable Development

Back to Plenary Lectures »


The advent of novel engineering technologies affords unprecedented advances toward long-elusive objectives of medical research. Individualized medicine responds to the basic but generally unattainable question of identifying the right therapy, reaching the right therapeutic target in the body at the right time, and securing immediate feedback as for its efficacy and undesired collateral effect. Finally, individualized medicine appears to be a credible general objective in many pathologies, owing to the integration of classical disciplines of clinical medicine, methods of molecular biology, and novel technology platforms.
Nanotechnologies are of great interest in the context of the drive toward individualized medicine, and may prove to be the necessary catalyst for its large-scale implementation. In this talk I will focus on nanoporous-silicon-based approaches for the individualization of medical intervention: multistage vectors for the preferential localization of therapeutic agents; injectable nano-particle generators for the therapy and prevention of metastatic cancer.
While these novel platforms engender direct clinical applications, at the same time they afford the formulation of novel frameworks and hypotheses for the basic understanding of pathological processes. In particular, multistage particulates are the probes that afford the exploration of a new perspective of cancer, that is, that the unifying aspect of the canonical ‘hallmarks of cancers’ all relate to dys-regulation of mass transport at scales including the molecular, cellular, microenvironmental, and systemic. These considerations are the starting point for “Transport OncoPhysics”.