Flogen
In Honor of Nobel Laureate Prof. Ferid Murad
Logo
Banner

Abstract Submission Open! About 500 abstracts submitted from about 60 countries


Featuring 9 Nobel Laureates and other Distinguished Guests

Abstract Submission

DETAILLED PROGRAM OVERVIEW

(Provisional)

Back
    Percolation Effects during Ionic Motion
    Manfred Martin1;
    1RWTH AACHEN UNIVERSITY, Aachen, Germany;
    PAPER: 236/SolidStateChemistry/Keynote (Oral)
    SCHEDULED: 11:55/Tue. 29 Nov. 2022/Andaman 1



    ABSTRACT:
    Interest in materials exhibiting oxygen ion and/or proton conduction has increased during the last years owing to their great importance for energy and environmental applications. <br />Ceria-based oxides are regarded as key oxide materials because rare earth-doped ceria shows a high oxygen ion conductivity even at intermediate temperatures. Using density-functional theory (DFT), we have investigated defect interaction and oxygen migration energies as well. By means of Kinetic Monte Carlo (KMC) simulations we then investigated the oxygen ion conductivity. We show that all interactions between the defects, namely vacancy-dopant attraction, dopant-dopant repulsion and vacancy-vacancy repulsion as well contribute to the so-called conductivity maximum of the ionic conductivity [1]. <br />BaZrO<sub>3</sub>-based oxides are proto-type proton conductors. Using density-functional theory (DFT), we have investigated defect interaction and proton migration energies in Y-doped BaZrO<sub>3</sub>. The macroscopic proton conductivity was then investigated by means of KMC simulations. We discuss the resulting proton conductivities concerning special percolation pathways for protons [2]. <br />Finally, we compare our theoretical results with experimental ones and discuss similarities and differences between oxygen ion and proton conductors.

    References:
    [1] J. Koettgen, S. Grieshammer, P. Hein, B. Grope, M. Nakayama, M. Martin, Phys.Chem.Chem.Phys. 20 (2018) 14291-14321.<br />[2] F.M. Draber, C. Ader, J.P. Arnold, S. Eisele, S. Grieshammer, S. Yamaguchi, M. Martin, Nature Materials 19 (2020) 338–346.