2023-Sustainable Industrial Processing Summit
Intl. Symp on Electrochemistry, Molten Salts, Corrosion and Recycling

Editors:F. Kongoli, R. Fehrmann, V. Papangelakis, I. Paspaliaris, G. Saevarsdottir, G. Kipouros, R. Singh, F. Wang, D. Macdonald, R. Gupta, M. Barinova, F. Ahmed, H. Ozgunay, K. Tang, N.N. Thanh, C. Gaidau, K. Kolomaznik
Publisher:Flogen Star OUTREACH
Publication Year:2023
Pages:114 pages
ISBN:978-1-989820-98-8 (CD)
ISSN:2291-1227 (Metals and Materials Processing in a Clean Environment Series)
CD-SIPS2023_Volume1
CD shopping page

    EFFECT OF TI SUBSTITUTION ON SDC20 AS ANODE MATERIAL FOR SOFC APPLICATIONS

    Kapil Sood1;
    1GOVERNMENT COLLEGE DHALIARA, Dhaliara, India;
    Type of Paper: Regular
    Id Paper: 336
    Topic: 47

    Abstract:

    The anode material is one of the critical component of a Solid Oxide Fuel Cell (SOFC) which is helpful to provide a triple-phase boundary for hydrogen and oxide ion reactions to take place at high operating temperatures. We, therefore, prepared Ti-substituted SDC20 as anode material and systematically investigated the phase study which showed cubic phase formation of the system and complete solid solubility of the system. Density functional theory (DFT) results showed enhanced oxygen vacancy formation in the prepared sample. The local density of state (LDOS) results showed that bandwidth center energy of Ti doed SDC20 between O-2p and Ti-3d overlapped compared with parent SDC20. Moreover, Ti substitution enhanced the mesoporosity in the sample which helped the electrochemical reaction in the anode side of SOFC. The polarization resistance of Ti-doped SDC20 was compatible with NiO and the composite electrode was stable for long hours. The preliminary results show that Ti-doped SDC20 oxide is a promising cathode material for SOFCs.

    Keywords:

    Electrochemical Devices; Inorganic Chemistry; Physical Electrochemistry; SOFC, EIS

    References:

    [1] Dong Guo, Aoye Li, Chunling Lu, Dongchao Qiu, Bingbing Niu, Biao Wang, High activity and stability of cobalt-free SmBa0.5Sr0.5Fe2O5+δ perovskite oxide as cathode material for solid oxide fuel cells, Ceramics International, 2023, doi.org/10.1016/j.ceramint.2023.08.145

    Cite this article as:

    Sood K. (2023). EFFECT OF TI SUBSTITUTION ON SDC20 AS ANODE MATERIAL FOR SOFC APPLICATIONS. In F. Kongoli, R. Fehrmann, V. Papangelakis, I. Paspaliaris, G. Saevarsdottir, G. Kipouros, R. Singh, F. Wang, D. Macdonald, R. Gupta, M. Barinova, F. Ahmed, H. Ozgunay, K. Tang, N.N. Thanh, C. Gaidau, K. Kolomaznik (Eds.), Sustainable Industrial Processing Summit Intl. Symp on Electrochemistry, Molten Salts, Corrosion and Recycling (pp. 51-52). Montreal, Canada: FLOGEN Star Outreach