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New exact solutions of Einstein Maxwell equations

for magnetostatic fields∗
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The symmetry reduction method based on the Fréchet derivative of differential operators is applied to investigate

symmetries of the Einstein–Maxwell field equations for magnetostatic fields, which is a coupled system of nonlinear

partial differential equations of the second order. The technique yields invariant transformations that reduce the given

system of partial differential equations to a system of nonlinear ordinary differential equations. Some of the reduced

systems are further studied to obtain the exact solutions.
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1. Introduction

Magnetic fields play an important role in the

study of astrophysical objects, such as neutron stars,

white dwarfs, pulsars, black holes, and galaxies. In

fact, several observations show that there are various

scenarios in which the magnetic fields and the gen-

eral relativity can not be neglected. One of them

is the presence of strong magnetic fields in active

galactic nuclei.[1,2] These nuclei are known to pro-

duce more radiation than the rest of the entire galaxy

and directly affect its structure and evolution. An-

other scenario is the production of relativistic col-

limated jets in the inner regions of accretion discs,

which can be explained by considering the magneto-

centrifugal mechanisms.[3,4] Also, magnetic fields are

important for understanding the interplay between

magnetic and thermal processes in strong magnetic

neutron stars.[5,6] At least 10% of all neutron stars

are born as magnetars, with magnetic fields above

1014G.[7,8] Analytical models that describe these as-

trophysical objects are often associated with the so-

lutions of Einstein’s equations.[9,10] In the search for

more realistic models for the compact stellar systems,

the energy–momentum tensor, the source of Einstein’s

equations, is modified by introducing more complex

terms that take into account additional physical prop-

erties, for example, electromagnetic fields.

These fields for deriving solutions were first con-

sidered by Bonnor[11] for obtaining solutions corre-

sponding to radial and longitudinal fields. Misra

and RadhaKrishna[12] have obtained some solutions in

which the metric function depends on one independent

variable. Garćıa and Gonjález[13] have presented a de-

tailed study of the counter-rotating model for generic

electrostatic (magnetostatic) axially symmetric thin

disks without radial pressure. In this paper, we de-

rive new exact analytic solutions of Einstein–Maxwell

equations for purely magnetostatic fields in general

relativity.

The simplest metric to describe a static axially

symmetric spacetime is Weyl’s line element[14]

ds2 = e−2ϕ[r2dϕ2 + e2Λ(dr2 + dz2)]− e2ϕdt2, (1)

where ϕ and Λ are functions of r and z only. The

Einstein–Maxwell field equations in the geometrized

units of 8πG = c = µ0 = ϵ0 = 0 are given by

Rab = Tab, (2)

Tab = FacF
c
b − 1

4
gabFcdF

cd, (3)

F ab
,b = 0, (4)

Fab = Aa,b −Ab,a, (5)

where Rab is the Ricci tensor, Tab is the electromag-

netic energy tensor, Fab is the electromagnetic field

tensor that satisfies Maxwell’s equations for empty

spacetime, and Aa = (ϕ,A, 0, 0) is the 4-potential.
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A comma followed by a lower suffix denotes a par-

tial differentiation with respect to the corresponding

variable.

The Einstein–Maxwell equations in the presence

of purely magnetostatic fields are equivalent to the

system

ϕrr +
1

r
ϕr + ϕzz −

e2ϕ

2r2
(A2

r +A2
z) = 0, (6)

Arr −
1

r
+Azz + 2(Arϕr +Azϕz) = 0, (7)

Λr = r(ϕ2
r − ϕ2

z) +
e2ϕ

2r
(A2

r −A2
z), (8)

Λz = 2rϕrϕz +
1

r
e2ϕArAz, (9)

where A is the magnetostatic potential and is a func-

tion of r and z only. For solving the nonlinear system

(6)–(9), first we solve Eqs. (6) and (7) to obtain ϕ(r, z)

and A(r, z). After that, by substituting ϕ and A into

Eqs. (8) and (9), we can obtain Λ(r, z).

There are various methods for obtaining the

solutions of nonlinear partial deferential equations

(PDEs). Some of the important contributions for find-

ing exact solutions of nonlinear PDEs are presented in

Refs. [15]–[17]. The effective methods for finding sym-

metries and constructing exact solutions include the

Lie classical approach,[18−22] the symmetry reduction

approach,[23,24] the nonclassical approach,[25] and the

isovector field method.[26,27] In this paper, we will use

the symmetry reduction approach to solve the nonlin-

ear Eqs. (6) and (7).

This paper is organized as follows. In Section 2,

the symmetries of Eqs. (6) and (7) in the general-

ized form are derived, which are then used to obtain

the associated Lie algebra of vector fields. In Section

3, we deal with the determination of the transforma-

tion group for the reduction of the system of nonlinear

PDEs to the system of ordinarily deferential equations

(ODEs). Exact solutions are also obtained in that

section. In Section 4, we give the discussion and the

concluding remarks.

2. Symmetry reduction method

and optimal system

The symmetry group for a single PDE or a sys-

tem of PDEs is a continuous group of transformations

that act on the space of independent and dependent

variables and leave the system invariant. The exact

solutions for a system of PDEs are found by solv-

ing the reduced system of differential equations in-

volving fewer number of independent variables. The

symmetry method has been used to examine the ex-

act solutions for various nonlinear PDEs (refer to

Refs. [28] and [29]). Herein, we briefly outline Stein-

berg’s method.[24] For this, we set

S1(ϕ) ≡ P (X̄, η̄)ϕr +Q(X̄, η̄)ϕz +R(X̄, η̄), (10)

S2(A) ≡ P (X̄, η̄)Ar +Q(X̄, η̄)Az + S(X̄, η̄), (11)

with X̄ = (r, z) and η̄ = (ϕ,A). The Fréchet deriva-

tive F̄ = (F1, F2) of N̄(η̄) ≡ (N1, N2) in the direction

of S̄ = (S1, S2) is given by

F̄ [N̄ , η̄, S̄] =
d

dϵ
F̄ [N̄(η̄ + ϵS̄)] |ϵ=0, (12)

which gives

F1(N̄1, η̄, S̄)

= [S1]rr +
1

r
[S1]r + [S1]zz −

e2[S1]

2r2

×
(
Ar[S2]z +Az[S2]z + 2[S1](A

2
r +A2

z)
)
, (13)

F2(N̄2, η̄, S̄)

= [S1]rr −
1

r
[S1]r + [S1]zz + 2(Ar[S1]r

+ϕr[S2]r +Az[S1]z + ϕz[S1]z). (14)

Substituting S1 and S2 from Eqs. (10) and (11) into

Eqs. (13) and (14), when expanded, results in the

polynomial expressions in various partial derivatives

of ϕ and A with respect to the spatial variable. The

calculations to obtain these derivatives are tedious, so

we list here the simplified set of determining equa-

tions for the group infinitesimals P , Q, R, and S.

From Eq. (13), after equating the coefficients of vari-

ous derivative terms to zero, we obtain

Qϕ = 0, QA = 0, Qr = 0, Qzz = 0,

Rz = 0, Rϕ = 0, RA = 0, Rr = 0,

Sz = 0, Sϕ = 0, SA = Qz −R,

Sr = 0, P = rQz. (15)

From Eq. (14), keeping in view the consequences on

the infinitesimals effected by the above set of equa-

tions, we obtain the following set of determining equa-

tions:

Pz = −Qr, Pϕ = 0, PA = 0,

Pr = Qz, Qzz = −Qrr, Rz = −Qr

2r
,

RA = −SAA

2
, Rr =

−P + rQz

2r2
. (16)
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Now solving determining Eqs. (15) and (16) for in-

finitesimals P , Q, R, and S, we arrive at the following

form of the generalized symmetries:

P = ar, Q = az + b,

R = a− l, S = lA+m, (17)

where a, b, l, and m are arbitrary constants.

The Lie algebra associated with Eqs. (6) and (7)

consists of the following four vector fields:

V1 =
∂

∂z
, V2 =

∂

∂A
, V3 = − ∂

∂ϕ
+A

∂

∂A
,

V4 = r
∂

∂r
+ z

∂

∂z
+

∂

∂ϕ
. (18)

Using these vector fields, we can reduce Eqs. (6) and

(7) into a system of ODEs after getting the similar-

ity variable and the similarity solution by solving the

characteristic equation

dr

P
=

dz

Q
=

dϕ

−R
=

dA

−S
. (19)

In general, there are infinite number of subalge-

bras of this Lie algebra formed from any linear com-

bination of generators Vj (j = 1, 2, 3, 4). And for each

subalgebra, we can obtain the reduction by using the

characteristic equation (19). However, two algebras

are similar if they are connected to each other by a

transformation from the symmetry group, in this case,

their corresponding invariant solutions are connected

to each other by the same transformation. Therefore,

it is sufficient to put all similar subalgebras into one

class. The set of all these representatives is called an

optimal system.[29] We will work out first the opti-

mal system and then embark upon the various reduc-

tions associated with the generators in the optimal

system. We begin by considering a general element

V = a1V1 + a2V2 + a3V3 + a4V4 of the symmetry alge-

bra and subject it to various adjoint transformations

to simplify it as much as possible.[29] The adjoint ac-

tion is given by the Lie series

Ad(exp(ϵVi))Vj = Vj − ϵ[Vi, Vj ]

+ ϵ2[Vi, [Vi, Vj ]]− · · · , (20)

where [Vi, Vj ] = ViVj−VjVi is the commutator for the

Lie algebra, and ϵ is a parameter.

The optimal system consists of the following eight

basic vector fields:

(i)V1, (ii)V2, (iii)V2 + V1, (iv)V2 − V1,

(v)V3, (vi)V3 + V1, (vii)V3 − V1,

(viii)V4 + αV3, (21)

where α is an arbitrary constant. Because of the

discrete symmetry (r, z, ϕ,A) → (−r, z, ϕ,A), vector

fields (iv) and (vii) are similar to vector fields (ii) and

(vi), respectively, in the optimal system, we confine

ourselves to the remaining six essential vector fields

while neglecting the other two.

3. Exact solutions of Einstein–

Maxwell equations for magne-

tostatic fields

The similarity variables and the similarity solu-

tions can be obtained by solving the characteristic

equation (19). The general solution of the equation

involves three constants; one becomes the new inde-

pendent variable ζ, and the other two are F and G,

which are dependent variables.

In this section, we will present the similarity vari-

ables and the similarity solutions for all eight essential

vector fields of the optimal system (21). The reduc-

tions of Eqs. (6) and (7) into systems of ODEs are

obtained for each vector field in the optimal system.

Some exact solutions for these ODEs are also given in

this section.

3.1.Vector field V1

Corresponding to this vector field, the forms of

the similarity variable and the similarity solution are

ζ = r, ϕ(r, z) = F (ζ), A(r, z) = G(ζ).

By using the above similarity variable and similarity

solution in Eqs. (6) and (7), the reduced system of

ODEs is obtained as follows:

F ′′(ζ) +
F ′(ζ)

r
− e2F (ζ)G′2(ζ)

2r2
= 0, (22)

G′′(ζ)− G′

ζ
+ 2F ′(ζ)G′(ζ) = 0. (23)

The solution for the above reduced system of ODEs is

F (ζ) =
1

2
log ζ

− 1

2
log

 e−2c1

2c22 cosh

(
log ζ − c3

c2

)2

ζ

+ c1,(24)

G(ζ) =

sinh

(
log ζ − c3

2c2

)
e2c1c2 cosh

(
log ζ − c3

2c2

) + c4. (25)

Hence, the solution of Eqs. (6) and (7) is given by
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ϕ(r, z) =
1

2
log r

− 1

2
log

 e−2c1

2c22 cosh

(
log r − c3

c2

)2

r

+ c1,(26)

A(r, z) =

sinh

(
log r − c3

2c2

)
e2c1c2 cosh

(
log r − c3

2c2

) + c4, (27)

Λ(r, z) = log r − c3 + 2log

(
cosh

(
log r − c3

2c2

))
+

log r

4c22
− c3

4c22
, (28)

where c1, c2, c3, and c4 are arbitrary constants.

3.2.Vector field V2

In this case, the forms of the similarity variable

and the similarity solution are

ζ =
r

z
, ϕ(r, z) = F (ζ), A(r, z) = G(ζ).

Using these substitutions in Eqs. (6) and (7), we ob-

tain the following reduced system of ODEs

F ′′(ζ)

F (ζ)
(1 + ζ2)− F ′2(ζ)

F 2(ζ)
(1 + ζ2) +

F ′(ζ)

ζF ′(ζ)

× (1 + 2ζ2)− 1− 1

2
F 2ζG′2(ζ)(1 + ζ2) = 0, (29)

G′′(ζ)(1 + ζ2)− G′(ζ)

ζ
+

2F ′(ζ)G′(ζ)

F (ζ)
(1 + ζ2). (30)

By solving this system of ODEs, we have

F (ζ) =

√
(2)c2ζ

2c21 + exp 2

 tanh−1
(
1/
√
1 + ζ2

)
√
2c2

 exp

(
2c3√
2c2

)
4 exp

 tanh−1
(
1/
√

1 + ζ2
)

√
2c2

 exp

(
c3√
2c2

) , (31)

G(ζ) =
4
√
2c1

c2

2c21 + exp


(
tanh−1

(
1/
√
1 + ζ2

)
+ c3

)√
2

c2


. (32)

Hence, the solution for nonlinear system (6)–(9) is given by

ϕ(r, z) = log


z

√
(2)c2

( r
z

)
2c21 +

exp


tanh−1

(
1√

1 + r/z2

)
√
2c2




2

exp

(
2c3√
2c2

)


4 exp

 tanh−1
(
1/
√

1 + r/z2
)

√
2c2

 exp

(
c3√
2c2

)


, (33)

A(r, z) =
4
√
2c1

c2

2c21 + exp


(
tanh−1

(
1√

1 + r/z2

)
+ c3

)
√
2

c2



, (34)

Λ(r, z) = − 1

2c22

(∫
p(r, z)dr − 2

∫
q(r, z)dz

)
, (35)

where p(r, z) =
l(r, z)

m(r, z)
,

l(r, z) =

(
−z2 + 2c22r

2 + 2
√
2z2c2

√
r2 + z2

z2
+ r2 − 2c22z

2

)
j(r, z),
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− 4c22c
2
1z

2 − 4c21c
2
2r

2 + 2c21r
2 − 4

√
2c21c2z

2

√
r2 + z2

z2
− 2c21z

2,

m(r, z) = r(r2 + z2)(2c21 + j(r, z)),

q(r, z) =

((
√
2c2

√
r2 + z2

z2
− 1

)
j(r, z)− 2c21 − 2

√
2c2c

2
1

√
r2 + z2

z2

)
z

(r2 + z2)(2c21 + j(r, z))
,

j(r, z) = exp

 tanh−1
(
1/
√
r2 + z2/z2 + c3

)√
2

c2

 ,

with c1, c2, and c3 being arbitrary constants.

3.3.Vector field V2 + V1

For this vector field, the forms of the similarity

variable and the similarity solution are

ζ = r, ϕ(r, z) = F (ζ), A(r, z) = z +G(ζ).

Using these substitutions, we can reduce Eqs. (6) and

(7) to

F ′′(ζ) +
F ′(ζ)

ζ
− e2F (ζ)(1 +G′(ζ)2)

2ζ2
= 0, (36)

G′′(ζ)− G′(ζ)

ζ
+ 2F ′(ζ)G′(ζ) = 0. (37)

By solving the second ODE, we obtain

G′(ζ) = c1ζ e
−2F (ζ). (38)

By substituting this G′(ζ) into the first ODE, we ob-

tain

F ′′(ζ) +
F ′(ζ)

ζ
− e2F (ζ)(1 + c21ζ

2 e−4F (ζ))

2ζ2
= 0, (39)

where c1 is an arbitrary constant. It is quite difficult

to solve this ODE.

3.4.Vector field V3

Corresponding to this vector field, we only have

a constant solution.

3.5.Vector field V3 + V1

For this vector field, the forms of the similarity

variable and the similarity solution are

ζ = r, ϕ(r, z) = −z + F (ζ), A(r, z) = ezG(ζ).

Using these substitutions, we reduce Eqs. (6) and (7)

to

2ζ2F ′′(ζ) + 2ζF ′(ζ)− e2F (ζ)(G′2(ζ) +G2(ζ)) = 0,(40)

ζG′′(ζ)−G′(ζ)− ζG(ζ) + 2ζF ′(ζ)G′(ζ) = 0. (41)

After the substitution of G(ζ) = e−F (ζ)H(ζ) and

F ′(ζ) = M(ζ), we have

2ζ2M ′(ζ) + 2ζM(ζ)−M(ζ)
2
H(ζ)2

+2M(ζ)H(ζ)H ′(ζ)−H ′(ζ)
2 −H(ζ)

2
= 0, (42)

ζM ′(ζ)H(ζ) + ζM(ζ)
2
H(ζ)− ζH ′′(ζ)

−M(ζ)H(ζ) +H ′(ζ) + ζH(ζ) = 0. (43)

For the solution of the above ODEs, three cases are

considered depending on H(ζ). In the first case,

H(ζ) = 0, it is not physically interesting. In the sec-

ond and the third cases, H(ζ) = ±
√
2ιζ, the above

ODEs are reduced into a single equation

ζ2M ′(ζ)− ζM(ζ) + ζ2M(ζ)
2
+ 1 + ζ2 = 0. (44)

The solution for the above ODE is

M(ζ) =
−c1ζY1(ζ) + J0(ζ)− ζJ1(ζ) + c1Y0(ζ)

ζ(c1Y0(ζ) + J0(ζ))
. (45)

Then the solution of Eqs. (6) and (7) is

ϕ(r, z) = −z +

∫
−c1rY1(r) + J0(r)− rJ1(r) + c1Y0(r)

r(c1Y0(r) + J0(r))
dr, (46)

A(r, z) = ez exp

(
−
∫

−c1rY1(r) + J0(r)− rJ1(r) + c1Y0(r)

r(c1Y0(r) + J0(r))
dr

)
±
√
2ιr, (47)

Λ(r, z) = log (r) + 2log (c1Y0(r) + J0(r))− 2z, (48)
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where c1 is an arbitrary constant, Jv(r) and Yv(r) are

the modified Bessel functions of the first and the sec-

ond kinds, respectively, and satisfy the modified Bessel

equation

r2Y′′ + rY′ − (r2 + v2)Y = 0. (49)

3.6.Vector field V4 + αV3

When α = 1, the forms of the similarity variable

and the similarity solution are

ζ =
r

z
, ϕ(r, z) = F (ζ), A(r, z) = zG(ζ).

By using these in Eqs. (6) and (7), we obtain the sys-

tem of reduced ODEs

F ′′(ζ)(1 + ζ2) +
F ′(ζ)

ζ
(1 + 2ζ2)− 1

2
e2F (ζ)(

G′(ζ)
2
(1 + ζ2) +G(ζ)

2 − 2ζG(ζ)G′(ζ)
)

ζ2
= 0, (50)

G′′(ζ)(1 + ζ2)− G′(ζ)

ζ
+ 2F ′(ζ)G′(ζ)(1 + ζ2)

−2ζF ′(ζ)G(ζ) = 0. (51)

After the substitution of G(ζ) = e−F (ζ)H(ζ) and

F ′(ζ) = M(ζ), we obtain

− 2ζ2M ′(ζ)− 2ζM(ζ)− 2ζ4M ′(ζ)− 4ζ3M(ζ)

+M(ζ)
2
H(ζ)

2
(1 + ζ2) +H ′(ζ)

2
(1 + ζ2) (52)

− 2M(ζ)H(ζ)H ′(ζ)(1 + ζ2) +H(ζ)2

+2ζM(ζ)H(ζ)
2 − 2ζH(ζ)H ′(ζ) = 0, (53)

ζM ′(ζ)H(ζ) + ζM(ζ)
2
H(ζ)− ζH ′′(ζ)

+ ζ3M ′(ζ)H(ζ)− ζ3H ′′(ζ)−M(ζ)H(ζ)

+H ′(ζ) + 2ζ2M(ζ)H(ζ)− ζ3M(ζ)
2
H(ζ) = 0. (54)

4. Discussion and conclusion

We have derived new exact solutions for Einstein–

Maxwell equations in general relativity corresponding

to the magnetostatic fields. The obtained solutions

describe the external gravitational fields of rotating

bodies, such as stars and galaxies. The symmetry

method based on the Fréchet derivatives is used to ob-

tain new exact analytic solutions for the nonlinear sys-

tem of PDEs. We exploit the symmetries of Einstein–

Maxwell equations to derive some ansatz leading to

the reduction of variables, with which the analytic so-

lutions are easier to obtain by considering the optimal

system of conjugacy inequivalent subgroups. The so-

lutions (33)–(35) and (46)–(48) are new exact analytic

solutions, which have not been obtained in the liter-

ature yet. The obtained solutions depend on both

independent variables r and z, and may be interesting

for further applications.
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[13] Garćıa-Reyes G and Gonjález G A 2007 Brazilian J. Phys.

37 1094

[14] Stephani H, Kramer D, MacCallum M, Hoenselaers D and

Herlt E 2003 Exact Solutions of Einstein Field Equations

(2nd edn.) (Cambridge: Cambridge University Press)

[15] Ji A C, Liu W M, Song J L and Zhou F 2008 Phys. Rev.

Lett. 101 010402

[16] Liang Z X, Zhang Z D and Liu W M 2005 Phys. Rev. Lett.

94 050402

[17] Liu W M, Wu B and Niu Q 2000 Phys. Rev. Lett. 84 2294

[18] Singh K and Gupta R K 2006 Int. J. Eng. Sci. 44 1256

[19] Zhao L, Fu J L and Chen B Y 2010 Chin. Phys. B 19

010301

[20] Li Y, Fang J H and Zhang K J 2011 Chin. Phys. B 20

030201

[21] Ma W X and Chen M 2009 Appl. Math. Comp. 215 2835

[22] Goyal N and Gupta R K 2011 Phys. Scr. 85 015004

[23] Bhutani O P, Singh K and Kalra D K 2003 Int. J. Eng.

Sci. 41 769

[24] Steinberg S 1979 Symmetry Methods in Differential Equa-

tions. Technical Report No. 367 (Albuquerque: Univer-

sity of New Mexico)

[25] Gandarias M L and Bruzon M S 1998 J. Nonlinear Math.

Phys. 5 8

[26] Attallaha S K, El-Sabbagh M F and Ali A T 2007 Com-

mun. Nonlinear Sci. Numer. Simul. 12 1153

[27] Ali A T 2009 Phys. Scr. 79 035006

[28] Bluman G W and Cole J D 1974 Similarity Methods for

Differential Equations (New York: Springer-Verlag)

[29] Ovsiannikov L V 1982 Group Analysis of Differential

Equations (New York: Academic Press)

090401-6


