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Abstract: A class of exact solutions are determined for steady plane motion of an incompressible fluid of
variable viscosity with heat transfer. This class consist of flows for which the vorticity distribution is pro-
portional to the stream function perturbed by a exponential stream. Defining a transformation variable, the
governing Navier-Stokes Equations are transformed into simple ordinary differential equations and a class of
exact solution is obtained. Finally, the influence of the pertinent parameters on the fluid motion are underlined
by graphical illustrations.
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1 Introduction
Navier-Stokes equations, are basic equations of fluid mechanics, are set of non-linear partial differential equations with
very small number of exact solutions. At present, numerical solutions to fluid mechanics problems are very attractive due
to wide availability of computer programs. But these numerical solutions are insignificant if they can not be compared
with either analytical solutions or experimental result. Exact solutions are important not only because they are solution of
some fundamental flows, but also because they serve as accuracy standards for approximate methods, whether numerical,
asymptotic or experimental.Wang [1] has given an excellent review of these solutions of the Navier-Stokes Equation.
These known solutions of viscous incompressible Newtonian fluid may be classified generally into three types:

(i)- Flows for which the non-linear inertial terms in the linear momentum equations vanish identically. Parallel flows
and flow with uniform suction are examples of these flows.

(ii)- Similarity properties of the flows such that the flow equations reduce to a set of ordinary differential equations.
Stagnation point flow is an example of such flow.

(iii)- Flow for which the vorticity function or stream function is chosen so that the governing equations in terms of the
stream function reduce to a linear equation.

By considering the vorticity distribution directly proportional to the stream function ∇2𝜓 = 𝐾𝜓, Taylor [2] showed
that the non-linearities are self-canceling and obtained an exact solution which represent the decay of the double array of
vortices. Kampe-De-Feriet [3] generalized the Taylor’s idea by taking the vorticity of the form ∇2𝜓 = 𝑓(𝜓). Kovasznay
[4] extended Taylor’s idea by taking the vorticity to be proportional to the stream function perturbed by a uniform stream
of the form ∇2𝜓 = 𝑦 + (𝐾2 − 4𝜋2)𝜓. Kovaszany was able to linearize the Navier-Stokes equation and determine an
exact solution for steady flow, which resembles that the downstream of a two-dimensional gird. Wang [5] was also able to
linearize the Navier-Stokes equations and showed that the result established Taylor and Kovasznay could be obtained from
his finding as special cases by taking the vorticity ∇2𝜓 = 𝐶𝑦+𝐴𝜓 . Lin and Tobak [6], Hui [7] and Naeem and Jamil [8]
obtained more results by studing similar flows, taking ∇2𝜓 = 𝐾(𝜓−𝑅𝑧) , ∇2𝜓 = 𝐾(𝜓−𝑅𝑦) and ∇2𝜓 = 𝐾(𝜓−𝑈𝑦).

The solutions for Newtonian and non-Newtonian fluid by assuming certain form of vorticity distribution or stream
function, are obtained by researcher such as Jeffrey [9], Riabouchinsky [10], Nemenyi [11], Ting [12], Rajagopal [13],
Rajagopal and Gupta [14], Siddiqui and Kaloni [15], Wang [16], Benharbit and Siddiqui [17], Chandna and Oku-Ukpong
[18], Oku-Ukpong and Chandna [19], Chandna and Oku-Ukpong [20], Scconmandi [21], Labropulu [22], Labropulu [23],
Mohyuddin et al. [24] and more recently Islam et al. [25] and Hayat et al. [26].
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In this note, we present a class of exact solutions to the equation governing the steady plane flows of an incompressible
fluid with variable viscosity and heat transfer for which the vorticity distribution is proportional to the stream function
perturbed by a exponential stream of the form ∇2𝜓 = 𝐾

(
𝜓 − 𝑈𝑒𝑎𝑥+𝑏𝑦

)
. We point out that the exact solutions obtained

by taking this form of vorticity to the best of our knowledge is yet not consider either in Newtonian or non-Newtonian
flows.

The plan of this paper is as follows: In section 2 basic flow equations are considered and are transformed into a new
system of equations. In section 3, some exact solutions of the new system of equations are determined. The method used
in determining the exact solutions to these equations is straightforward.

2 Basic governing equations
The basic non-dimensional equation governing the steady plane flow of an incompressible fluid of variable viscosity, in
the absence of external force and with no heat addition from Naeem and Jamil [8] are:

𝑢𝑥 + 𝑣𝑦 = 0, (1)

𝑢𝑢𝑥 + 𝑣𝑢𝑦 = −𝑝𝑥 +
1

𝑅𝑒

[
(2𝜇𝑢𝑥)𝑥 +

(
𝜇(𝑢𝑦 + 𝑣𝑥)

)
𝑦

]
, (2)

𝑢𝑣𝑥 + 𝑣𝑣𝑦 = −𝑝𝑦 + 1

𝑅𝑒

[
(2𝜇𝑣𝑦)𝑦 +

(
𝜇(𝑢𝑦 + 𝑣𝑥)

)
𝑥

]
, (3)

𝑢𝑇𝑥 + 𝑣𝑇𝑦 =
1

𝑅𝑒𝑃𝑟
(𝑇𝑥𝑥 + 𝑇𝑦𝑦) +

𝐸𝑐

𝑅𝑒
𝜇
[
2(𝑢2𝑥 + 𝑣2𝑦) + (𝑢𝑦 + 𝑣𝑥)

2
]
, (4)

where 𝑢, 𝑣 are the velocity components, 𝑝 the pressure, 𝑇 the temperature, 𝜇 the viscosity, 𝑅𝑒, 𝑃𝑟 and 𝐸𝑐 are Reynolds,
Prandtl and Eckert numbers respectively. Eq. (1) implies the existence of the stream function 𝜓 such that

𝑢 = 𝜓𝑦, 𝑣 = −𝜓𝑥. (5)

The system of Eqs.(1-4) on utilizing Eq.(5), transform into the following system of equations:

𝐿𝑥 = −𝜓𝑥𝜔 +
1

𝑅𝑒

[
𝜇(𝜓𝑦𝑦 − 𝜓𝑥𝑥)

]
𝑦
, (6)

𝐿𝑦 = −𝜓𝑦𝜔 +
1

𝑅𝑒

[
𝜇(𝜓𝑦𝑦 − 𝜓𝑥𝑥)

]
𝑥
− 4

𝑅𝑒
(𝜇𝜓𝑥𝑦)𝑦, (7)

𝜓𝑦𝑇𝑥 − 𝜓𝑥𝑇𝑦 =
1

𝑅𝑒𝑃𝑟
(𝑇𝑥𝑥 + 𝑇𝑦𝑦) +

𝐸𝑐

𝑅𝑒
𝜇
[
4(𝜓𝑥𝑦)

2 + (𝜓𝑦𝑦 − 𝜓𝑥𝑥)
2
]
, (8)

where the vorticity function 𝜔 and the generalized energy function 𝐿 are defined by

𝜔 = −(𝜓𝑥𝑥 + 𝜓𝑦𝑦), (9)

𝐿 = 𝑝+
1

2
(𝜓2

𝑥 + 𝜓2
𝑦)−

2𝜇𝜓𝑥𝑦

𝑅𝑒
. (10)

Once a solution of system of Eqs.(6-8) is determined, the pressure 𝑝 is obtained form Eq.(10). We shall investigate
fluid motion for which the vorticity distribution is proportional to the stream function perturbed by a exponential stream.
Therefore we set

𝜓𝑥𝑥 + 𝜓𝑦𝑦 = 𝐾
(
𝜓 − 𝑈𝑒𝑎𝑥+𝑏𝑦

)
, (11)

where 𝐾, 𝑎, 𝑏 ∕= 0, 𝑎 ∕= 𝑏 and U are real constants. On substituting

Ψ = 𝜓 − 𝑈𝑒𝑎𝑥+𝑏𝑦, (12)
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and employing Eq.(11), the Eq.(9) becomes

𝜔 = −𝐾Ψ. (13)

Equations (6) and (7), utilizing Eqs.(12) and (13), become

𝐿𝑥 =
(𝐾Ψ2

2

)
𝑥
+ 𝑎𝑈𝐾Ψ𝑒𝑎𝑥+𝑏𝑦 +

1

𝑅𝑒

[
𝜇
(
Ψ𝑦𝑦 −Ψ𝑥𝑥 + (𝑏2 − 𝑎2)𝑈𝑒𝑎𝑥+𝑏𝑦

)]
𝑦
, (14)

𝐿𝑦 =
(𝐾Ψ2

2

)
𝑦
+ 𝑏𝑈𝐾Ψ𝑒𝑎𝑥+𝑏𝑦 +

1

𝑅𝑒

[
𝜇
(
Ψ𝑦𝑦 −Ψ𝑥𝑥 + (𝑏2 − 𝑎2)𝑈𝑒𝑎𝑥+𝑏𝑦

)]
𝑥
−

− 4

𝑅𝑒

[
𝜇
(
Ψ𝑥𝑦 + 𝑎𝑏𝑈𝑒𝑎𝑥+𝑏𝑦

)]
𝑦
. (15)

Equations (14) and (15), on using the integrability condition 𝐿𝑥𝑦 = 𝐿𝑦𝑥, provide

𝐻𝑥𝑥 −𝐻𝑦𝑦 + 𝑈𝐾(𝑏Ψ𝑥 − 𝑎Ψ𝑦)𝑒
𝑎𝑥+𝑏𝑦 − 4

𝑅𝑒

[
𝜇
(
Ψ𝑥𝑦 + 𝑎𝑏𝑈𝑒𝑎𝑥+𝑏𝑦

)]
𝑥𝑦

= 0, (16)

where

𝐻 =
𝜇
(
Ψ𝑦𝑦 −Ψ𝑥𝑥 + (𝑏2 − 𝑎2)𝑈𝑒𝑎𝑥+𝑏𝑦

)
𝑅𝑒

.

Equation(16) is the equation that must be satisfied by the function Ψ and the viscosity 𝜇 for the motion of an steady
incompressible fluid of variable viscosity in which the vorticity distribution is proportional to the stream function perturbed
by a exponential stream. Equation(8), employing Eq.(12), becomes(

Ψ𝑦 + 𝑏𝑈𝑒𝑎𝑥+𝑏𝑦
)
𝑇𝑥 − (

Ψ𝑥 + 𝑎𝑈𝑒𝑎𝑥+𝑏𝑦
)
𝑇𝑦 =

1

𝑅𝑒𝑃𝑟
(𝑇𝑥𝑥 + 𝑇𝑦𝑦)+

+
𝐸𝑐

𝑅𝑒
𝜇
[
4
(
Ψ𝑥𝑦 + 𝑎𝑏𝑈𝑒𝑎𝑥+𝑏𝑦

)2

+
(
Ψ𝑦𝑦 −Ψ𝑥𝑥 + (𝑏2 − 𝑎2)𝑈𝑒𝑎𝑥+𝑏𝑦

)2]
. (17)

Equation(11), employing Equation(12), becomes

Ψ𝑥𝑥 +Ψ𝑦𝑦 −𝐾Ψ = −(𝑎2 + 𝑏2)𝑈𝑒𝑎𝑥+𝑏𝑦. (18)

Introducing the transformation variable as

𝜉 = 𝑎𝑥+ 𝑏𝑦.

Transforming the Equations (16), (17) and (18), into new independent variable 𝜉 we have

Ψ𝜉𝜉 − ΛΨ = −𝑈𝑒𝜉, (19)

where

Λ =
𝐾

𝑎2 + 𝑏2
,

and (
𝜇Ψ

)
𝜉𝜉

= 0, (20)

𝑇𝜉𝜉 + 𝐸𝑐𝑃𝑟Λ2(𝑎2 + 𝑏2)𝜇Ψ2 = 0, (21)
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3 Exact solutions
In this section we present some exact solutions of the system of Equations(19-21) as follows: We consider the following
three cases:
Case-I: Λ = −𝑛2, 𝑛 > 0
Case-II: Λ = 𝑚2,𝑚 > 0
Case-III: Λ = 0

We now consider these cases separately and determine the solution of the Equations(19-21). Our strategy is that first
we find Ψ from equation(19) and use this Ψ to determine 𝜇, 𝑇, 𝜓, 𝑢, 𝑣 and 𝑝 from system of Eqs.(20), (21), (12), (5) and
(10).
Case-I

For this case the solution of Eq.(19) in the physical plane is given by

Ψ = 𝐴1 cos(𝑛(𝑎𝑥+ 𝑏𝑦) +𝐴2)− 𝑈𝑒𝑎𝑥+𝑏𝑦

𝑛2 + 1
, (22)

where 𝐴1 and 𝐴2 are real constants. Equation(20), utilizing Eq.(22), gives

𝜇 =
𝐴3(𝑎𝑥+ 𝑏𝑦) +𝐴4

𝐴1 cos(𝑛(𝑎𝑥+ 𝑏𝑦) +𝐴2)− 𝑈𝑒𝑎𝑥+𝑏𝑦

𝑛2+1

, (23)

where 𝐴3 and 𝐴4 are real constants. Equation(21), using Eq.(23), becomes

𝑇𝜉𝜉 + 𝐸𝑐𝑃𝑟𝑛4(𝑎2 + 𝑏2)(𝐴3𝜉 +𝐴4)Ψ = 0. (24)

The solution of Eq.(24) is

𝑇 = 𝐸𝑐𝑃𝑟𝑛(𝑎2+𝑏2)
𝑛2+1

[
𝐴3

{
𝑈𝑛3𝑒𝑎𝑥+𝑏𝑦

(
𝑎𝑥+ 𝑏𝑦 − 2

)
+𝐴1(𝑛

2 + 1)
{
𝑛(𝑎𝑥+ 𝑏𝑦) cos(𝑛(𝑎𝑥+ 𝑏𝑦) +𝐴2)− 2 sin(𝑛(𝑎𝑥+ 𝑏𝑦) +𝐴2)

}}
+𝑛𝐴4

{
𝑈𝑛2𝑒𝑎𝑥+𝑏𝑦 +𝐴1(𝑛

2 + 1) cos(𝑛(𝑎𝑥+ 𝑏𝑦) +𝐴2)
}]

+𝐴5(𝑎𝑥+ 𝑏𝑦) +𝐴6,

(25)

where 𝐴5 and 𝐴6 are real constants. The stream function 𝜓 for this case is given by

𝜓 =
𝑈𝑛2

𝑛2 + 1
𝑒𝑎𝑥+𝑏𝑦 +𝐴1 cos(𝑛(𝑎𝑥+ 𝑏𝑦) +𝐴2). (26)

It represent a exponential stream 𝑈𝑛2

𝑛2+1𝑒
𝑎𝑥+𝑏𝑦 in the positive x-direction plus a perturbation that is periodic in x and y. The

component of velocity distribution from Eqs.(5) and (26), and pressure from Eq.(10), are given by

𝑢 =
𝑈𝑏𝑛2

𝑛2 + 1
𝑒𝑎𝑥+𝑏𝑦 −𝐴1𝑛𝑏 sin(𝑛(𝑎𝑥+ 𝑏𝑦) +𝐴2), (27)

𝑣 = − 𝑈𝑎𝑛2

𝑛2 + 1
𝑒𝑎𝑥+𝑏𝑦 +𝐴1𝑛𝑎 sin(𝑛(𝑎𝑥+ 𝑏𝑦) +𝐴2), (28)

𝑝 = 𝑈𝑛2(𝑎2+𝑏2)
2(𝑛2+1) 𝑒𝑎𝑥+𝑏𝑦

[
𝑈𝑒𝑎𝑥+𝑏𝑦 − 2𝐴1

{
cos(𝑛(𝑎𝑥+ 𝑏𝑦) +𝐴2)

+𝑛 sin(𝑛(𝑎𝑥+ 𝑏𝑦) +𝐴2)
}]

− 𝐴3𝑛
2(𝑏2−𝑎2)
𝑅𝑒 (𝑏𝑥+ 𝑎𝑦) + 2𝑎𝑏𝑛2

𝑅𝑒

(
𝐴3(𝑎𝑥+ 𝑏𝑦) +𝐴4

)
−𝑛2(𝑎2+𝑏2)

2(𝑛2+1)2

[
𝑈𝑛𝑒𝑎𝑥+𝑏𝑦 −𝐴1(𝑛

2 + 1) sin(𝑛(𝑎𝑥+ 𝑏𝑦) +𝐴2)
]2

+𝐴7,

(29)

where 𝐴7 is real constant.
Case-II

For this case

Ψ = 𝐵1𝑒
𝑚(𝑎𝑥+𝑏𝑦) +𝐵2𝑒

−𝑚(𝑎𝑥+𝑏𝑦) +
𝑈

𝑚2 − 1
𝑒𝑎𝑥+𝑏𝑦, (30)
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where 𝐵1 and 𝐵2 are real constants. Equation(20), utilizing Eq.(30), gives

𝜇 =
𝐵3(𝑎𝑥+ 𝑏𝑦) +𝐵4

𝐵1𝑒𝑚(𝑎𝑥+𝑏𝑦) +𝐵2𝑒−𝑚(𝑎𝑥+𝑏𝑦) + 𝑈
𝑚2−1𝑒

𝑎𝑥+𝑏𝑦
, (31)

where 𝐵3 and 𝐵4 are real constants. Equation(21), using Eq.(31), becomes

𝑇𝜉𝜉 + 𝐸𝑐𝑃𝑟𝑚4(𝑎2 + 𝑏2)(𝐵3𝜉 +𝐵4)Ψ = 0. (32)

The solution of Eq.(32) is

𝑇 = 𝐸𝑐𝑃𝑟𝑚(𝑎2+𝑏2)
1−𝑚2

[
𝐵3

{
𝑈𝑚3𝑒𝑚(𝑎𝑥+𝑏𝑦)

(
𝑎𝑥+ 𝑏𝑦 − 2

)
+𝐵1(𝑚

2 − 1)
(
𝑚(𝑎𝑥+ 𝑏𝑦)− 2

)
𝑒𝑚(𝑎𝑥+𝑏𝑦)

+𝐵2(𝑚
2 − 1)

(
𝑚(𝑎𝑥+ 𝑏𝑦) + 2

)
𝑒−𝑚(𝑎𝑥+𝑏𝑦)

}
+𝑚𝐵4

{
𝑈𝑚2𝑒𝑚(𝑎𝑥+𝑏𝑦)

+𝐵1(𝑚
2 − 1)𝑒𝑚(𝑎𝑥+𝑏𝑦) +𝐵2(𝑚

2 − 1)
}]

+𝐵5(𝑎𝑥+ 𝑏𝑦) +𝐵6,

(33)

where 𝐵5 and 𝐵6 are real constants. For this case stream function

𝜓 =
𝑈𝑚2

𝑚2 − 1
𝑒𝑎𝑥+𝑏𝑦 +𝐵1𝑒

𝑚(𝑎𝑥+𝑏𝑦) +𝐵2𝑒
−𝑚(𝑎𝑥+𝑏𝑦), (34)

represent a exponential stream 𝑈𝑚2

𝑚2−1𝑒
𝑎𝑥+𝑏𝑦 in the positive x-direction plus a perturbation that is not periodic in x and y.

The components of velocity distribution and pressure, in this case are given by

𝑢 =
𝑈𝑏𝑚2

𝑚2 − 1
𝑒𝑎𝑥+𝑏𝑦 +𝐵1𝑚𝑏𝑒

𝑚(𝑎𝑥+𝑏𝑦) −𝐵2𝑚𝑏𝑒
−𝑚(𝑎𝑥+𝑏𝑦), (35)

𝑣 = − 𝑈𝑎𝑚2

𝑚2 − 1
𝑒𝑎𝑥+𝑏𝑦 −𝐵1𝑚𝑎𝑒

𝑚(𝑎𝑥+𝑏𝑦) +𝐵2𝑚𝑎𝑒
−𝑚(𝑎𝑥+𝑏𝑦), (36)

𝑝 = 𝑈𝑚2(𝑎2+𝑏2)
2(𝑚2−1)

[
𝑈𝑒2(𝑎𝑥+𝑏𝑦) + 2𝐵1(𝑚− 1)𝑒(𝑚+1)(𝑎𝑥+𝑏𝑦) − 2𝐵2(𝑚+ 1)𝑒(1−𝑚)(𝑎𝑥+𝑏𝑦)

]
+𝐵3𝑚

2(𝑏2−𝑎2)
𝑅𝑒 (𝑏𝑥+ 𝑎𝑦)− 2𝑎𝑏𝑚2

𝑅𝑒

(
𝐵3(𝑎𝑥+ 𝑏𝑦) +𝐵4

)
−𝑚2(𝑎2+𝑏2)

(𝑚2−1)2 𝑒−2𝑚(𝑎𝑥+𝑏𝑦)
[
𝑈𝑚𝑒(1+𝑚)(𝑎𝑥+𝑏𝑦) +𝐵1(𝑚

2 − 1)𝑒2𝑚(𝑎𝑥+𝑏𝑦) −𝐵2(𝑚
2 − 1)

]2
+𝐵7,

(37)

where 𝐵7 is real constant.
Case-III

For this case, we have

Ψ = 𝐶1(𝑎𝑥+ 𝑏𝑦) + 𝐶2 − 𝑈𝑒𝑎𝑥+𝑏𝑦, (38)

𝜇 =
𝐶3(𝑎𝑥+ 𝑏𝑦) + 𝐶4

𝐶1(𝑎𝑥+ 𝑏𝑦) + 𝐶2 − 𝑈𝑒𝑎𝑥+𝑏𝑦
, (39)

𝑇 = 𝐶5(𝑎𝑥+ 𝑏𝑦) + 𝐶6, (40)

where 𝐶1, 𝐶2,..., 𝐶6 are real constants. Λ = 0, corresponds to an irrotational flow and it is the following uniform flow

𝜓 = 𝐶1(𝑎𝑥+ 𝑏𝑦) + 𝐶2. (41)

The components of velocity distribution and pressure, in this case are

𝑢 = 𝐶1𝑏, (42)

𝑣 = −𝐶1𝑎, (43)

𝑝 = − (𝑎2 + 𝑏2)𝐶2
1

2
+ 𝐶7, (44)

where 𝐶7 is real constant.
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4 Results and discussion

This section deals with the effect of the pertinent parameters 𝑛, 𝑚, 𝑎 and 𝑏 on the components of velocity profiles 𝑣(𝑥, 𝑦)
and 𝑢(𝑥, 𝑦). Figures(1-4) are for case-I and figures(5-8) are for case-II. The effect of Prandtl number 𝑃𝑟 and Eckert
number 𝐸𝑐 on the temperature profile is also discussed. Figs. 1 and 2 show the influence on components of velocity
profile 𝑣 and 𝑢 in the direction of 𝑦 and 𝑥 respectively, for different values of parameter 𝑛. It is clear form these figures, as
it is expected that velocity components have oscillating behavior and both velocity components are increasing function of
𝑛 in absolute value. Furthermore, magnitude of velocity components 𝑣(𝑥, 𝑦) and 𝑢(𝑥, 𝑦) or amplitude of the oscillation
increase with increase of parameter 𝑛. It is noted that increase in this parameter increase the velocity components in the
most narrow position. Similar effects are observed in the direction of 𝑦 and 𝑥 for the parameter 𝑏 and 𝑎 on the velocity
components 𝑣(𝑥, 𝑦) and 𝑢(𝑥, 𝑦), respectively as shown in Figs. 3 and 4. Figs. 5, 6, 7 and 8 show the influence of parameter
𝑚, 𝑎 and 𝑏 on the velocity components 𝑣(𝑥, 𝑦) and 𝑢(𝑥, 𝑦), in the direction of 𝑦 and 𝑥 respectively. It is clear from these
figure that both velocity components are increasing function of these parameters in absolute value.

Finally, the influence of Prandtl and Eckert numbers on the temperature form Eqs. (25) and (33) are clear that tem-
perature is directly proportional to the Prandtl and Eckert numbers and temperature increase or decrease with increase or
decrease of Prandtl and Eckert numbers.

5 Conclusions

A class of exact solutions of the equations governing the steady plane motion of an incompressible fluid with variable
viscosity and heat transfer is determined. This class consist of flows for which the vorticity distribution is proportional to
the stream function perturbed by a exponential stream.

Figure 1: Profile of the velocity component 𝑢 given by Eq.
(27) in the direction of 𝑦, for 𝐴1 = 𝐴2 = 𝑈 = 𝑏 = 1, 𝑎 = 0
and different values of 𝑛.

Figure 2: Profile of the velocity component 𝑣 given by Eq.
(28) in the direction of 𝑥, for 𝐴1 = 𝐴2 = 𝑈 = 𝑏 = 1, 𝑏 = 0
and different values of 𝑛.
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Figure 3: Profile of the velocity component 𝑢 given by Eq.
(27) in the direction of 𝑦, for 𝐴1 = 𝐴2 = 𝑈 = 1, 𝑛 =
7, 𝑎 = 0 and different values of 𝑏.

Figure 4: Profile of the velocity component 𝑣 given by Eq.
(28) in the direction of 𝑥, for 𝐴1 = 𝐴2 = 𝑈 = 1, 𝑛 =
7, 𝑏 = 0 and different values of 𝑎.

Figure 5: Profile of the velocity component 𝑢 given by Eq.
(35) in the direction of 𝑦, for 𝐴1 = 𝐴2 = 𝑈 = 𝑏 = 1, 𝑎 = 0
and different values of 𝑚.

Figure 6: Profile of the velocity component 𝑣 given by Eq.
(36) in the direction of 𝑥, for 𝐴1 = 𝐴2 = 𝑈 = 𝑏 = 1, 𝑏 = 0
and different values of 𝑚.

Figure 7: Profile of the velocity component 𝑢 given by Eq.
(35) in the direction of 𝑦, for 𝐴1 = 𝐴2 = 𝑈 = 1,𝑚 =
7, 𝑎 = 0 and different values of 𝑏.

Figure 8: Profile of the velocity component 𝑣 given by Eq.
(36) in the direction of 𝑥, for 𝐴1 = 𝐴2 = 𝑈 = 1,𝑚 =
7, 𝑏 = 0 and different values of 𝑎.

In order to determine the exact solutions, the flow equations are first written in terms of the stream function 𝜓, the
vorticity function 𝜔 and the generalized energy function 𝐿. Employing the integrability condition on the generalized
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energy function 𝐿, an equation is determined that must be satisfied by the function Ψ and the viscosity 𝜇 for the flow
under consideration.

The solutions are obtained through the procedure described in section 3. The solutions in case-I represents a expo-
nential stream plus a perturbation that is periodic in x and y. The solution in case-II, in general, represents a exponential
stream plus a perturbation that is not periodic in x and y. When 𝐵1 = 0, in the solution of case-II, the solution represents
a exponential flow in the region 𝑥 > 0 , 𝑦 > 0 perturbed by a part which decays and grows exponentially as x , y increase
for 𝑚 > 0 and 𝑚 < 0 , respectively. Similarly, we can give description for flow in other regions. Finally the influence of
various parameters of interest on the velocity components are plotted and discussed.
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