Publications of Prof. Alexandra NAVROTSKY
Professor and Director, Materials of the Universe
Arizona State University
Tempe, Arizona 85287-1604

ALEXANDRA NAVROTSKY

PUBLICATIONS - RESEARCH PAPERS

"Thermodynamic Parameters of CaMgSi\textsubscript{2}O\textsubscript{6}-Mg\textsubscript{2}Si\textsubscript{2}O\textsubscript{6} Pyroxenes Based on Regular Solution and Cooperative Disordering Models,” T. J. B. Holland, A. Navrotsky, and R. C. Newton, Contrib. Mineral. Petrol., 69, 337-344 (1979).

"The Igneous System CaMgSi\textsubscript{2}O\textsubscript{6}-CaAl\textsubscript{2}Si\textsubscript{2}O\textsubscript{6}-NaAlSi\textsubscript{2}O\textsubscript{6}: Variations on a Classic Theme by Bowen,” D. F. Weill, R. Hon, and A. Navrotsky, in "Physics of Magmatic Processes,” R. B. Hargraves, Ed., Princeton Univ. Press, 49-92 (1980).

"Thermodynamic Parameters of CaMgSi\textsubscript{2}O\textsubscript{6}-Mg\textsubscript{2}Si\textsubscript{2}O\textsubscript{6} Pyroxenes Based on Regular Solution and Cooperative Disordering Models, Reply to Discussion,” T. J. B. Holland, A. Navrotsky, and R. C. Newton, Contrib. Mineral. Petrol., 75, 305-306 (1980).

"Thermochemistry of Glasses and Liquids in the Systems CaMgSi\textsubscript{2}O\textsubscript{6}-CaAl\textsubscript{2}Si\textsubscript{2}O\textsubscript{6}-NaAlSi\textsubscript{2}O\textsubscript{6}, SiO\textsubscript{2}-CaAl\textsubscript{2}Si\textsubscript{2}O\textsubscript{6}-NaAlSi\textsubscript{2}O\textsubscript{6}, and SiO\textsubscript{2}-Al\textsubscript{2}O\textsubscript{3}-CaO-Na\textsubscript{2}O,” A. Navrotsky, R. Hon, D. F. Weill, and D. J. Henry, Geochim. Cosmochim. Acta, 44, 1409-1423 (1980).

"Lattice Stabilities of AX and AB\textsubscript{2}O\textsubscript{4} Compounds,” A. Navrotsky, Calphad., 4, 255-264 (1980).

"A Thermochemical Study of the Phase Reaction Tb\textsubscript{2}O\textsubscript{1.5x} + (3/28 - x/2)O\textsubscript{2} → (1/7)Tb\textsubscript{7}O\textsubscript{12},” H. Inaba, A. Navrotsky, and L. Eyring, J. Solid State Chem., 37, 77-84 (1981).

"The Effect of Fe on the Crystal Structure of Wadsleyite ß-(Mg$_{1-x}$Fe$_x$)$_2$SiO$_4$, 0.00 < x < 0.40," L. W. Finger, R. M. Hazen, J. Zhang, J. Ko, and A. Navrotsky, *Phys. Chem. Min.*, 19, 361-368 (1993).

"Energetics of La₂₋ₓSrₓCoO₄₋ₓ (0.5 < x < 1.5)," T. R. S. Prasanna and A. Navrotsky, J. Solid State Chem., 112, 192-195 (1994).

“Structural Variation in Ca(Ti,\(x\)Si\(1-x\))O\(_3\) Perovskites (1>x>0.65) and the Ordered Phase Ca\(_2\)TiSiO\(_6\),” K. Leinenweber, A. Grzechnik, M. Voorhees, A. Navrotsky, A. Yao, and P. F. McMillan, *Phys. Chem. Min.*,**24**, 528-534 (1997).

"Thermodynamics of Formation for Two Cerium Aluminum Oxides, CeAlO2(s) and CeAl12O19.918(s), and Cerium Sesquioxide, Ce2O3(s) at T = 298.15 K," R. L. Putnam, A. Navrotsky, E. H. P. Cordfunke, and M. E. Huntelaar, J. Chem. Thermodyn., 32, 911-921 (2000).

"Thermodynamics of Uranyl Minerals: Enthalpies of Formation of Rutherfordite, UO\textsubscript{2}CO\textsubscript{3}, Andersonite, Na\textsubscript{2}CaUO\textsubscript{2}(CO\textsubscript{3})\textsubscript{3}(H\textsubscript{2}O)\textsubscript{5}, and Grimselite, K\textsubscript{3}NaUO\textsubscript{2}(CO\textsubscript{3})\textsubscript{3}H\textsubscript{2}O," K.-A. Hughes Kubatko, K. B. Helean, A. Navrotsky, and P. C. Burns, \textit{Amer. Miner.}, \textbf{90}, 1284-1290 (2005).

"Enthalpy of Formation of Li\textsubscript{0.5}CoO\textsubscript{2} (0.5 ≤ x ≤ 1.0)," M. Wang, A. Navrotsky, S. Venkatraman, and A. Manthiram, \textit{J. Electrochem. Soc.}, \textbf{152}, J82-J84 (2005).

"Enthalpy of Formation of Li\textsubscript{0.5}CoO\textsubscript{2} (0.5 ≤ x ≤ 1.0)," M. Wang, A. Navrotsky, S. Venkatraman, and A. Manthiram, \textit{J. Electrochem. Soc.}, \textbf{152}, J82-J84 (2005).

"Enthalpy of Formation of Li\textsubscript{0.5}CoO\textsubscript{2} (0.5 ≤ x ≤ 1.0)," M. Wang, A. Navrotsky, S. Venkatraman, and A. Manthiram, \textit{J. Electrochem. Soc.}, \textbf{152}, J82-J84 (2005).

"Enthalpy of Formation of Li\textsubscript{0.5}CoO\textsubscript{2} (0.5 ≤ x ≤ 1.0)," M. Wang, A. Navrotsky, S. Venkatraman, and A. Manthiram, \textit{J. Electrochem. Soc.}, \textbf{152}, J82-J84 (2005).

"Enthalpy of Formation of Li\textsubscript{0.5}CoO\textsubscript{2} (0.5 ≤ x ≤ 1.0)," M. Wang, A. Navrotsky, S. Venkatraman, and A. Manthiram, \textit{J. Electrochem. Soc.}, \textbf{152}, J82-J84 (2005).

"Enthalpy of Formation of Li\textsubscript{0.5}CoO\textsubscript{2} (0.5 ≤ x ≤ 1.0)," M. Wang, A. Navrotsky, S. Venkatraman, and A. Manthiram, \textit{J. Electrochem. Soc.}, \textbf{152}, J82-J84 (2005).

“Energetics of Cerium-Zirconium Substitution in the xCe$_{0.8}$Y$_{0.2}$O$_{1.9-}$-(1-x)Zr$_{0.8}$Y$_{0.2}$O$_{1.9}$ System,” W. Chen, A. Navrotsky, Y. P. Xiong, and H. Yokokawa, J. Am. Ceram. Soc., 90, 584-589 (2007).

“Thermochemistry of La_{0.7}Sr_{0.3}Mn_{1-x}Fe_{x}O_{3} Solid Solutions (0<x<1),” N. Kemik, Y. Takamura, and A. Navrotsky, J. Solid State Chem., 184, 2118-2123 (2011).

“Thermochemistry of Rare Earth Perovskites RE$_{0.67}$-Na$_{3x}$TiO$_3$ (RE = La, Ce),” D. Feng, P. S. Maram, A. Mielewczyk-Gryn, and A. Navrotsky, Amer Miner., 101, 1125-1128 (2016).

“Thermochemistry of Rare Earth Perovskites,” D. Feng, and A. Navrotsky, *MRS Advances, 1*, 2695-2700 (2016).

“Enthalpies of Formation of the Solid Solutions of Zr$_x$Y$_{0.5-x}$Ta$_{0.5-x}$O$_2$ (0 ≤ x ≤ 0.2 and 0.65 ≤ x ≤ 1),” M. Lepple, K. Lilova, C. Levi, A. Navrotsky, J. Mater. Res., 34, 3343-3350 (2019).

“Thermochemistry of Cation-Disordered Li ion Battery Cathode Materials, Li$_{1+x}$M$'$M$''$O$_2$ (M$'$ = Nb and Ta, M$''$ = Mn and Fe),” T. Subramani, A. Navrotsky, RSC Advances, 10, 6540-6546 (2020).

“Structure-Property and Thermodynamic Relationships in Rare Earth (Y, Eu, Pr) Iridate Pyrochlores,” T. Nenoff, D. Rademacher, M. Rodriguez, Mark; Sandia National Laboratories, T. Garino, T. Subramani, A. Navrotsky. TBD., to be submitted (2020)

BOOKS EDITED, REVIEWED, AND MISCELLANEOUS OTHER PUBLICATIONS:

PAPERS BY COLLEAGUES BASED ON RESEARCH CONDUCTED WHILE ASSOCIATED WITH A. NAVROTSKY’S GROUP:

PAPERS BY OTHERS:
