Flogen
2019 - Sustainable Industrial Processing Summit & Exhibition
23-27 October 2019, Coral Beach Resort, Paphos, Cyprus
Abstract still accepted for a limited time
Almost 500 Abstracts Submitted from 60 Countries
Six Nobel Laureates have already confirmed their attendance: Profs. Dan Shechtman, Kurt Wüthrich, Ferid Murad, Rudy Marcus, Yuan Lee and Klaus Klitzing.
NEWS
Abstract Submission

DETAILLED PROGRAM OVERVIEW

Back
    Metal-Bonded Magnets Based on YCo5-Type Nanocrystals
    Marko Soderžnik1; Matic Korent2; Kristina Zagar Soderznik3; Jean-marie Dubois4; Pelin Tozman5; M. Venkatesan6; Michael Coey7; Spomenka Kobe8;
    1JOžEF STEFAN INSTITUTE, Ljubljana, Slovenia; 2JOZZEF STEFAN INSTITUTE, LJUBLJANA, Slovenia; 3JOZEF STEFAN INSTITUTE, Ljubljana, Slovenia; 4JSI - K7 DPT FOR NANOSTRUCTURED MATERIALS, Ljubljana, Slovenia; 5NIMS, Tsukuba, Japan; 6SCHOOL OF PHYSICS AND CRANN, TRINITY COLLEGE, Dublin, Ireland; 7SCHOOL OF PHYSICS, Dublin, Ireland; 8JOSEF STEFAN INSTITUTE, Ljubljana, Slovenia;
    PAPER: 342/SISAM/Regular (Oral)
    SCHEDULED: 16:45/Sat. 26 Oct. 2019/Dr. Christian Bernard



    ABSTRACT:
    Metal-bonded magnets based on YCo<sub>5</sub>-type nanocrystals [i] were produced by hot-compaction using a spark plasma-sintering device. Zn and Zn/Al metallic binders with a melting temperature of ̴ 420°C were employed to fabricate dense cylindrical magnets. Two different pressures were used for compaction. The pressure of 400 MPa provided a metal-bonded magnet with Vickers hardness (HV10) of 460 ± 20 Vickers. The temperature coefficients for remanence (α) and coercivity (β) were derived from magnetization vs. magnetic field measurements in the temperature range of 20°C – 150°C. Temperature coefficients α and β for the Zn/Al-bonded magnet pressed with 400 MPa were -0.055 %/°C and -0.201 %/°C, respectively. The field emission gun scanning electron microscope revealed a ‘core-shell’-type microstructure. The pure YCo<sub>4.8</sub>Fe<sub>0.2</sub> phase was detected in the core region whereas the shell was enriched with non-ferromagnetic Zn or Zn/Al phases. The high-resolution transmission electron microscope revealed the presence of clusters with ̴ 20 nm YCo<sub>4.8</sub>Fe<sub>0.2</sub> grains. In the Zn/Al-bonded magnet, fabricated at 400 MPa, the coercivity <i>µ<sub>0</sub>H<sub>ci</sub></i>, remanent magnetization σ and energy product (BH)<sub>max</sub> were 0.87 T, 39.3 Am<sup>2</sup>/kg and 23.4 kJ/m<sup>3</sup>, respectively.[ii]

    References:
    [i] P. Tozman, M. Venkatesan, J. M. D. Coey, Optimization of the magnetic properties of nanostructured Y-Co-Fe alloys for permanent magnets, AIP Adv. 6 (2016) 056016.<br />[ii] M. Soderžnik, M. Korent, K. Žagar Soderžnik, J.-M. Dubois, P. Tozman, M. Venkatesan, J. M. D. Coey, S. Kobe, Hot-compaction of YCo4.8Fe0.2 nanocrystals for metal-bonded magnets, J. Mag. and Magn. Mat. 460 (2018) 401-408.