ORALS
SESSION: SISAMMonAM-R2
| Mizutani International Symposium (6th Intl. Symp. on Science of Intelligent & Sustainable Advanced Materials (SISAM)) |
Mon. 28 Nov. 2022 / Room: Ballroom A | |
Session Chairs: Jean-Marie Dubois; Session Monitor: TBA |
11:30: [SISAMMonAM01] OS
SISAM 2022: a Brief Introduction to the Symposium in the Honour of Prof. Uichiro Mizutani Jean-marie
Dubois1 ;
1Institut Jean Lamour, Nancy, France;
Paper Id: 461
[Abstract] We shall be happy to convene in Phuket on the occasion of the 2022 Sustainable Industrial Processes Summit to celebrate the lifetime achievements of Prof. Dr Uichiro Mizutani from University of Nagoya, Japan. Uichiro received his higher education in this university and then moved to the United States for a post-doc under the supervision of Prof. Massalski at the Mellon Institute in Pittsburg. When back to Japan, he returned to Nagoya where he took a position first as a research fellow and then as an associate professor. This took him to become a full professor and head of a laboratory for the rest of his career until he retired from public education in Japan. He then became a fellow of the famous Toyota Physical and Chemical Research Institute where he still serves as a senior fellow.
The career of Uichiro Mizutani is a magnificent example of a full dedication to one key topic in solid-state physics, i.e. the understanding of the behaviour of electrons in metals [1]. This behaviour explains the stability of solid and liquid metals, and provides definite clues to understand why Nature selects specific atomic architectures among the infinite number of possible configurations. It was a matter of interest already before the invention of quantum mechanics in the early 2Oth century, but became a central aspect of solid-state physics when the principles of quantum mechanics were applied to this subject by Fermi, Born, and many others. The invention of quantum mechanical computing techniques made it fully operational in more recent years. Mizutani and his collaborators pioneered the application of this approach to a huge variety of metallic crystals, including complex ones like quasicrystals, their periodic counterparts, and amorphous systems, thus rising a unique body of knowledge and understanding of those systems [2]. Of special relevance is their complete description of the so-called Hume-Rothery rules that explain the formation and stability of many complex crystals and which before them was more a matter of experimental discovery rather than a deeper theoretical insight. Quite a few more fields have benefitted from Mizutani’s work, such as e.g. metallic glasses, or thermoelectric, or superconducting materials. In the end, Mizutani is to be considered as the living key figure in the field of metals and alloys, to be compared with his very few predecessors who like him where honoured by the Hume-Rothery award of the TMS in preceding decades (e.g. Jacques Friedel in France or Sir Nevill Mott in the U.K.). A summary of the many prizes and awards, which were presented to Prof. Mizutani over the years can be found on the SIPS 2022 website [3].
The symposium that is dedicated to honour the achievements of Uichiro Mizutani will focus on a short list of his many pioneer results and will provide an insight into few future developments of his work.
References:
[1] U. Mizutani, “Introduction to the Electron Theory of Metals”, Cambridge University Press, (2001).
[2] U. Mizutani et al., Chem. Soc. Rev., 2012, 41, 6799–6820, DOI: 10.1039/c2cs35161g.
[3] https://www.flogen.org/sips2022/Uichiro_Mizutani.php
SESSION: SISAMMonPM1-R2
| Mizutani International Symposium (6th Intl. Symp. on Science of Intelligent & Sustainable Advanced Materials (SISAM)) |
Mon. 28 Nov. 2022 / Room: Ballroom A | |
Session Chairs: Ryoji Asahi; Session Monitor: TBA |
14:00: [SISAMMonPM105] OS Plenary
ABOUT THE E/A RATIO: HOW IT HELPS UNDERSTANDING SOME APPLIED PROPERTIES OF CMAs (Part 1) Jean-marie
Dubois1 ;
1Institut Jean Lamour, Nancy, France;
Paper Id: 404
[Abstract] This SISAM 2022 symposium is about the lifetime achievements of Prof. Uichiro Mizutani. Among many other breakthroughs, Mizutani and his collaborators were able to define in an unambiguous way the so-called e/a ratio [1], which is a measure of the number of electrons an atom shares with the Fermi sea in an intermetallic to achieve structural stability of a given crystal architecture. Although computation of this number requires periodicity of the lattice, the concept can be extended to aperiodic metallic systems such as quasicrystals [2]. It turns out that the e/a ratio found for truly aperiodic quasicrystals as well as weakly periodic crystals of giant unit cell (the so-called approximants) corresponds to a very specific value: e/a=2.2 ± 0.1 e-/at [3]. This way, the basic assumption of An Pang Tsai [4], who discovered most of the thermodynamically stable quasicrystals using e/a, was confirmed, yet with e/a defined with no questionable assumption and a clearly assessed mechanism for the contribution of the individual atoms to the valence band.
The formation of a pseudo-gap at the Fermi energy was discovered and documented using soft X-ray spectroscopy by my late colleague, Esther Belin-Ferré [5,6]. It was well illustrated in a family of Al-based intermetallics spanning a broad range of e/a values. The deepening of the pseudo-gap around the e/a=2.2 e-/at value is clearly observable for stable compounds. The talk will report how this data helped us to understand two properties of practical interest of quasicrystals and related compounds. The first is the reduced wetting observed against polar liquids (like water) deposited on the polished surface of a quasicrystal equipped with its layer of native oxide in air [7]. The second is friction or solid-solid adhesion measured in vacuum against metallic antagonists like hard-Cr steel [8]. Both properties emphasize the role of the reduced density of free electrons in the material and indeed correlate with the electronic conductivity of these specific materials.
References:
[1] U. Mizutani, M. Inukai, H. Sato, E.S.Z. Zijlstra, Chem. Soc. Rev. 41 (2012) 6799-6820.
[2] D. Shechtman, I. Blech, D. Gratias, J.W. Cahn, Phys. Rev. Lett. 53-20 (1984) 1951-54.
[3] U. Mizutani, H. Sato, M. Inukai, Y. Nishino, E.S. Zijlstra, Inorg. Chem. 54 (20125) 930-946. dx.doi.org/10.1021/ic502286q
[4] A.P. Tsai, Sci. Technol. Adv. Mater. 9 (2008) 013008 (20pp).
[5] A. Traverse, L. Dumoulin, E. Belin, C. Sénémaud, in Quasicrystalline Materials, Eds. Ch. Janot & J.M. Dubois, World Scientific, Singapore, 1988, pp. 399-408.
[6] E. Belin-Ferré, M. Klanjsek, Z. Jaglicic, J. Dolinsek, J.M. Dubois, J. Phys.: Condens. Matter 17 (2005) 6911-24.
[7] J.M. Dubois and E. Belin-Ferré, Appl. Adhes. Sci. (2015) 3:28. DOI: 10.1186/s40563-015-0046-0
[8] J.M. Dubois and E. Belin-Ferré, Sci. Technol. Adv. Mater., 15 (2014) 034804 (20pp). DOI:10.1088/1468-6996/15/3/034804
SESSION: SISAMMonPM1-R2
| Mizutani International Symposium (6th Intl. Symp. on Science of Intelligent & Sustainable Advanced Materials (SISAM)) |
Mon. 28 Nov. 2022 / Room: Ballroom A | |
Session Chairs: Ryoji Asahi; Session Monitor: TBA |
14:25: [SISAMMonPM106] OS Plenary
ABOUT THE E/A RATIO: HOW IT HELPS UNDERSTANDING SOME APPLIED PROPERTIES OF CMAs (Part 2) Jean-marie
Dubois1 ;
1Institut Jean Lamour, Nancy, France;
Paper Id: 452
[Abstract] This SISAM 2022 symposium is about the lifetime achievements of Prof. Uichiro Mizutani. Among many other breakthroughs, Mizutani and his collaborators were able to define in an unambiguous way the so-called e/a ratio [1], which is a measure of the number of electrons an atom shares with the Fermi sea in an intermetallic to achieve structural stability of a given crystal architecture. Although computation of this number requires periodicity of the lattice, the concept can be extended to aperiodic metallic systems such as quasicrystals [2]. It turns out that the e/a ratio found for truly aperiodic quasicrystals as well as weakly periodic crystals of giant unit cell (the so-called approximants) corresponds to a very specific value: e/a=2.2 ± 0.1 e-/at [3]. This way, the basic assumption of An Pang Tsai [4], who discovered most of the thermodynamically stable quasicrystals using e/a, was confirmed, yet with e/a defined with no questionable assumption and a clearly assessed mechanism for the contribution of the individual atoms to the valence band.
The formation of a pseudo-gap at the Fermi energy was discovered and documented using soft X-ray spectroscopy by my late colleague, Esther Belin-Ferré [5,6]. It was well illustrated in a family of Al-based intermetallics spanning a broad range of e/a values. The deepening of the pseudo-gap around the e/a=2.2 e-/at value is clearly observable for stable compounds. The talk will report how this data helped us to understand two properties of practical interest of quasicrystals and related compounds. The first is the reduced wetting observed against polar liquids (like water) deposited on the polished surface of a quasicrystal equipped with its layer of native oxide in air [7]. The second is friction or solid-solid adhesion measured in vacuum against metallic antagonists like hard-Cr steel [8]. Both properties emphasize the role of the reduced density of free electrons in the material and indeed correlate with the electronic conductivity of these specific materials.
References:
[1] U. Mizutani, M. Inukai, H. Sato, E.S.Z. Zijlstra, Chem. Soc. Rev. 41 (2012) 6799-6820.
[2] D. Shechtman, I. Blech, D. Gratias, J.W. Cahn, Phys. Rev. Lett. 53-20 (1984) 1951-54.
[3] U. Mizutani, H. Sato, M. Inukai, Y. Nishino, E.S. Zijlstra, Inorg. Chem. 54 (20125) 930-946. dx.doi.org/10.1021/ic502286q
[4] A.P. Tsai, Sci. Technol. Adv. Mater. 9 (2008) 013008 (20pp).
[5] A. Traverse, L. Dumoulin, E. Belin, C. Sénémaud, in Quasicrystalline Materials, Eds. Ch. Janot & J.M. Dubois, World Scientific, Singapore, 1988, pp. 399-408.
[6] E. Belin-Ferré, M. Klanjsek, Z. Jaglicic, J. Dolinsek, J.M. Dubois, J. Phys.: Condens. Matter 17 (2005) 6911-24.
[7] J.M. Dubois and E. Belin-Ferré, Appl. Adhes. Sci. (2015) 3:28. DOI: 10.1186/s40563-015-0046-0
[8] J.M. Dubois and E. Belin-Ferré, Sci. Technol. Adv. Mater., 15 (2014) 034804 (20pp). DOI:10.1088/1468-6996/15/3/034804