FLOGEN Logo
In Honor of Nobel Laureate Dr. Aaron Ciechanover

SIPS 2025 logo
SIPS 2025 takes place from November 17-20, 2025 at the Dusit Thani Mactan Resort in Cebu, Philippines

Honoree Banner

More than 400 abstracts submitted from over 50 countries
Abstracts Still Accepted for a Limited Time



Featuring many Nobel Laureates and other Distinguished Guests

ADVANCED PROGRAM

Orals | Summit Plenaries | Round Tables | Posters | Authors Index


Click to download the displayed program

Oral Presentations


SESSION:
CompositeTuePM2-R1
Meyers International Symposium (11th Intl. Symp. on Composite, Ceramic & Nano Materials Processing, Characterization & Applications)
Tue. 18 Nov. 2025 / Room: Dusit 1
Session Chairs: Sergio Monteiro; Student Monitors: TBA

15:05: [CompositeTuePM207] OS
BALLISTIC PROPERTIES OF NOVEL EPOXY COMPOSITE REINFORCED WITH SEDGE FIBERS (CYPERUS MALACCENSIS) USED AS A STANDALONE TARGET AGAINST A 7.62 AMMUNITION
Belayne Zanini Marchi1; Lucas Neuba1; Elias Matias Bentes1; Sarah De Melo1; Sergio Monteiro1; Marc Meyers2
1Military Institute of Engineering, Rio de Janeiro, Brazil; 2University of California San Diego, La Jolla, United States
Paper ID: 48 [Abstract]

A growing demand for research about ballistic armor shields follows the increase of violence around the world. Ultimately, different composite materials with polymeric matrices have already presented the minimum performance as an individual protection required with cheaper and lower density, such as those reinforced with natural lignocellulosic fiber (NLF). The Cyperus malaccensis, a type of sedge fiber, is already used in simple items like ropes, furniture, and paper, but has not yet been investigated as composite reinforcement for possible ballistic protection applications. Therefore, composite plates were prepared for the ballistic tests, one for each condition of 10, 20 and 30 vol% sedge fibers. Each plate has been subjected to 5 test-shots  using 7.62 mm commercial ammunition. The fibers were embedded under pressure in the epoxy resin matrix and cured at room temperature for 24 hours. The tested specimens were examined by scanning electron microscopy. Besides, analysis of variance was performed and the absorbed energy of all specimens were evaluated.



15:45 COFFEE BREAK/POSTERS - Ballroom Foyer



08:00 SUMMIT PLENARY - Dusit Ballroom
12:00 LUNCH - Tradewinds Café

SESSION:
CompositeWedPM1-R1
Meyers International Symposium (11th Intl. Symp. on Composite, Ceramic & Nano Materials Processing, Characterization & Applications)
Wed. 19 Nov. 2025 / Room: Dusit 1
Session Chairs: Henry Alonso Colorado Lopera; Student Monitors: TBA

13:40: [CompositeWedPM103] OS
BALLISTIC PROPERTIES OF NOVEL EPOXY COMPOSITE REINFORCED WITH ALKALI TREATED SEDGE FIBERS (CYPERUS MALACCENSIS)
Belayne Zanini Marchi1; Lucas Neuba1; Elias Matias Bentes1; Sarah De Melo1; Sergio Monteiro1; Marc Meyers2
1Military Institute of Engineering, Rio de Janeiro, Brazil; 2University of California San Diego, La Jolla, United States
Paper ID: 46 [Abstract]

A growing demand for research about ballistic armor shields follows the increase of violence around the world. Ultimately, different composite materials with polymeric matrices have already presented the minimum performance as an individual protection required with cheaper and lower density, such as those reinforced with natural lignocellulosic fiber (NLF). The Cyperus malaccensis, a type of sedge fiber, is already used in simple items like ropes, furniture, and paper, but has not yet been investigated as composite reinforcement for possible ballistic protection applications. Therefore, composite plates were prepared for the ballistic tests, based on the condition of 30 vol% alkali treated sedge fibers. A total of seven plates have been subjected to seven test-shots  using 7.62 mm commercial ammunition. The fibers were embedded under pressure in the epoxy resin matrix and cured at room temperature for 24 hours. The tested specimens were examined by scanning electron microscopy. Besides, analysis of variance (ANOVA) was performed and the absorbed energy of all specimens were evaluated, based on a confidence level of 95%.



14:20 POSTERS - Ballroom Foyer