| SESSION: AdvancedMaterialsTuePM2-R6 |
9th Intl Symposium on New & Advanced Materials and Technologies for Energy, Environment, Health and Sustainable Development |
| Tue. 18 Nov. 2025 / Room: Jasmin | |
| Session Chairs: Sanjeev Khanna; Farida Kapsalamova; Student Monitors: TBA | |
Ultrahigh-temperature, corrosion-resistant materials based on HfB2 (melting point of HfB2 - 3380 oC) have high thermal conductivity, high level of mechanical characteristics, high corrosion resistance in oxidizing atmosphere due to the ability to form protective, oxidation-resistant scales at elevated temperatures. They are promising for many ultrahigh-temperature applications, for example, for the manufacture of nozzles for aircraft and rocket engines that are in contact with aggressive gases at high temperatures, as well as for the manufacture of wing edges and fairings for supersonic aircraft, etc. It is known that the addition of SiC to HfB2 can increase the mechanical properties of composite. The results of present investigations (obtained in the framework of III-5-23 (0786) grant from the National Academy of Sciences of Ukraine) showed that on the densification, mechanical characteristics and resistance toward ablation important role play sizes and quality of SiC initial powder used as addition. Such effect we observed both for the composites prepared under hot pressing conditions (30 MPa pressure) and conditions of high pressure (2 GPa) – high temperature. Our previous studies have shown that the use of high pressures and temperatures and hot pressing, and the addition of SiC to HfB2 allowed us to achieve a level of mechanical properties of the resulting ceramic materials that, in terms of hardness and crack resistance, surpass the best world analogues. It was also shown that the addition of SiC significantly reduces the melting point and accelerates the oxidation kinetics upon heating. The microhardness, HV, and fracture toughness, K1C, (at an indentation load of 9.8 N) of the HfB2-30 wt.% SiC(5-10 µm) composite material which was hot pressed (under 30 MPa) were HV =38.6 ±2.5 GPa and K1C =7.7 ±0.9 MPa m0.5 when specific density 6.54 g/cm3 (and near zero porosity) was attained. For HfB2-30 wt.% SiC(30-50 µm) porosity was about 17 % and HV = 28.1 ±11.3 GPa and K1C = 6.1 ±2.2 MPa m0.5. Hot-pressed HfB2 without additives exhibits HV = 18.9 ±0.1 GPa and K1C = 7.65 ±0.6 MPa·m0.5, porosity 2.4% and specific density 10.79 g/cm3. Ablation tests in air of the samples of ultrahigh-temperature hot-pressed ceramics based on HfB2 and HfB2-SiC when heated with a gas burner (into which an O2/C2H2 mixture was fed, and the distance to the sample surface was 13 mm) showed that HfB2 ceramics with an additive of 30% by weight of SiC with a grain size of 30-50 μm and 5-10 μm turned out to be significantly more stable (up to 2066-2080 °C, respectively, at an internal mass of 0.25 mg/s) than ceramics with HfB2 without the additive (cracked at 1870 °C).
| SESSION: AdvancedMaterialsWedPM1-R6 |
9th Intl Symposium on New & Advanced Materials and Technologies for Energy, Environment, Health and Sustainable Development |
| Wed. 19 Nov. 2025 / Room: Jasmin | |
| Session Chairs: David Scheiblehner; Carla Vilela; Student Monitors: TBA | |
The results of influence of amount of SiC additives to HfB2 and the physical chemical characteristics of the additives will be under the discussion. Studies of the resistance to ablation of hot-pressed HfB2 and HfB2-SiC samples heated by a gas burner showed that HfB2 ceramics with the addition of 30 wt.% SiC with average grain sizes of 30-50 μm (powder with fragmented grains with sharp edges with approximate average stoichiometry SiC1.6O0.1, and 6_H SiC structure) and 5-10 μm (single-crystal grains with a hypercubic shape, close to spherical, practically free of impurities, with approximate stoichiometry SiC1.5, b-SiC) have significantly higher thermal resistance – up to temperatures of 2766 and 2780 °C, respectively (mass loss of 0.25 mg/s) than HfB2 ceramics without additives, samples of which cracked already at 1870 °C. The formation of a framework from SiC when 40 wt.% SiC was added resulted in decrease of resistance to ablation, of Young's modulus, and the material cracking at low temperature during heating in air. The composite made from a mixture of HfB2 - 30 wt.% b-SiC (5-10 μm) by hot pressing under a pressure of 30 MPa, 1950 °C, 30 min. with a specific gravity of 6.54 g/cm3 demonstrated the highest Vickers microhardness HV(9.8 N)=38.6±2.5 GPa and fracture toughness, K1c(9.8 N)=7.7 ± 0.9 MPa m0.5, Young's modulus 510 GPa. The additions of SiC_6H with sharp fragment grains of 1 μm in size with a lamellar or strongly elongated in one direction grains, with an approximate stoichiometry of SiC4.6O0.75 or 3-10 μm with an approximate stoichiometry of SiC2.3O0.25 added in the same amount (30 wt.%) were cracked during heating in air at a temperature of 1787 and 1455 °C, respectively.