FLOGEN Logo
In Honor of Nobel Laureate Dr. Aaron Ciechanover

SIPS 2025 logo
SIPS 2025 takes place from November 17-20, 2025 at the Dusit Thani Mactan Resort in Cebu, Philippines

Honoree Banner

More than 400 abstracts submitted from over 50 countries
Abstracts Still Accepted for a Limited Time



Featuring many Nobel Laureates and other Distinguished Guests

ADVANCED PROGRAM

Orals | Summit Plenaries | Round Tables | Posters | Authors Index


Click to download the displayed program

Oral Presentations


08:00 SUMMIT PLENARY - Dusit Ballroom
12:00 LUNCH - Tradewinds Café

SESSION:
CompositeTuePM1-R1
Meyers International Symposium (11th Intl. Symp. on Composite, Ceramic & Nano Materials Processing, Characterization & Applications)
Tue. 18 Nov. 2025 / Room: Dusit 1
Session Chairs: Henry Alonso Colorado Lopera; Student Monitors: TBA

13:20: [CompositeTuePM102] OS
ELECTRICAL CHARACTERISTICS OF COMPOSITE MATERIALS: AN IN-DEPTH REVIEW
Sergio Monteiro1; Thomaz Jacintho Lopes1; Marc Meyers2
1Military Institute of Engineering, Rio de Janeiro, Brazil; 2University of California San Diego, La Jolla, United States
Paper ID: 59 [Abstract]

This study provides an in-depth review of the electrical properties of composite materials, encompassing metals, ceramics, polymers, and nanocomposites reinforced with nanometric particles. It examines critical electrical characteristics, such as conductivity and dielectric properties, and their implications for diverse applications. The analysis highlights the significant enhancement of electrical conductivity through the incorporation of metallic nanoparticles, which establish conductive networks within polymer matrices. By exploring the interactions between composite constituents, the study elucidates the behavior of these materials under varying conditions, offering valuable insights into their performance. This comprehensive review serves as a foundation for targeted future research, facilitating detailed investigations into specific composite types and their potential limitations. Furthermore, it enriches the existing literature by providing a broad perspective on the electrical properties of composites, paving the way for advancements in fields such as electronics, biomedical devices, and environmental technologies. This work underscores the importance of understanding component interactions to drive innovation and develop novel applications for composite materials.



14:20 POSTERS - Ballroom Foyer

SESSION:
CompositeTuePM3-R1
Meyers International Symposium (11th Intl. Symp. on Composite, Ceramic & Nano Materials Processing, Characterization & Applications)
Tue. 18 Nov. 2025 / Room: Dusit 1
Session Chairs: Pedro Henrique Poubel Mendonça Da Silveira; Student Monitors: TBA

16:25: [CompositeTuePM310] OS
MCNP ANALYSIS OF BISMUTH OXIDE-ENHANCED ARAMID-LINEN EPOXY COMPOSITES FOR RADIOLOGICAL PROTECTION
Sergio Monteiro1; Thomaz Jacintho Lopes1; Douglas Silva1; Marc Meyers2
1Military Institute of Engineering, Rio de Janeiro, Brazil; 2University of California San Diego, La Jolla, United States
Paper ID: 62 [Abstract]

This research explores the radiological shielding performance of hybrid composites made from aramid and linen fabrics embedded in an epoxy polymer matrix, reinforced with bismuth oxide (Bi2O3), using Monte Carlo N-Particle (MCNP) simulations. The study aims to assess gamma radiation attenuation by analyzing photon flux across composite layers and energy deposition within the material. The MCNP code was utilized to simulate gamma photon interactions, investigating the effects of Bi2O3 concentration, layer thickness, and fabric arrangement. Bi2O3, known for its high atomic number and density, significantly enhances the composite’s radiation attenuation capabilities while maintaining structural integrity. The results indicate substantial reductions in photon flux and efficient energy absorption, driven by the combined properties of aramid’s mechanical strength, linen’s eco-friendliness, and Bi2O3’s superior radiation-blocking capacity. The simulations highlight how composite design influences shielding effectiveness, providing valuable insights into developing lightweight, durable materials for radiological protection in medical imaging, aerospace, and industrial applications. This work lays the groundwork for experimental validation and optimization of Bi2O3-reinforced hybrid composites, advancing the development of sustainable, high-performance solutions for radiation shielding and contributing to safer and more efficient protective technologies.






08:00 SUMMIT PLENARY - Dusit Ballroom
12:00 LUNCH - Tradewinds Café

SESSION:
CompositeWedPM1-R1
Meyers International Symposium (11th Intl. Symp. on Composite, Ceramic & Nano Materials Processing, Characterization & Applications)
Wed. 19 Nov. 2025 / Room: Dusit 1
Session Chairs: Henry Alonso Colorado Lopera; Student Monitors: TBA

13:20: [CompositeWedPM102] OS
MONTE CARLO SIMULATION OF HYBRID ARAMID-LINEN EPOXY COMPOSITES REINFORCED WITH GRAPHENE OXIDE FOR RADIOLOGICAL PROTECTION
Sergio Monteiro1; Thomaz Jacintho Lopes1; Douglas Silva1; Marc Meyers2
1Military Institute of Engineering, Rio de Janeiro, Brazil; 2University of California San Diego, La Jolla, United States
Paper ID: 61 [Abstract]

This study investigates the radiological protection capabilities of hybrid composites composed of aramid and linen fabrics embedded in an epoxy polymer matrix, reinforced with graphene oxide (GO), through Monte Carlo N-Particle (MCNP) simulations. The research focuses on evaluating the attenuation of gamma radiation by analyzing photon flux between composite layers and energy deposition within the material structure. The MCNP code was employed to model the interaction of gamma photons with the hybrid composite, considering variations in GO concentration, layer thickness, and fabric stacking configurations. The incorporation of GO enhances the mechanical and shielding properties of the composite, leveraging its high electron density and dispersion within the epoxy matrix. Results demonstrate significant photon flux reduction and optimized energy absorption, influenced by the synergistic effects of aramid’s high tensile strength, linen’s sustainability, and GO’s radiation interaction capabilities. The simulations reveal the impact of composite design on shielding efficiency, offering insights into lightweight, flexible materials for radiological protection in medical, aerospace, and industrial applications. This work establishes a foundation for experimental validation and further optimization of GO-reinforced hybrid composites, contributing to the development of sustainable and high-performance radiation shielding solutions.



14:20 POSTERS - Ballroom Foyer

SESSION:
CompositeWedPM3-R1
Meyers International Symposium (11th Intl. Symp. on Composite, Ceramic & Nano Materials Processing, Characterization & Applications)
Wed. 19 Nov. 2025 / Room: Dusit 1
Session Chairs: Clarissa De Paula Dias; Student Monitors: TBA

16:25: [CompositeWedPM310] OS
NEUTRONIC EVALUATION OF UO₂-ThO₂ MIXED FUEL IN A SINGLE ROD AND FUEL ASSEMBLY CONFIGURATION FOR SMALL MODULAR REACTORS
Sergio Monteiro1; Thomaz Jacintho Lopes1
1Military Institute of Engineering, Rio de Janeiro, Brazil
Paper ID: 67 [Abstract]

The integration of thorium into uranium dioxide (UO₂) fuel presents a promising strategy to enhance fuel cycle sustainability, reduce long-term radiotoxicity, and improve proliferation resistance in nuclear reactors. This study investigates the neutronic performance of a mixed oxide fuel composed of UO₂ and thorium dioxide (ThO₂) in the context of Small Modular Reactors (SMRs), focusing on both a single fuel rod and a complete fuel assembly configuration. The SCALE simulation suite was employed to model and analyze key neutronic parameters, including effective multiplication factor (k-eff), neutron flux distribution, and isotopic evolution over burnup. The analysis explores various UO₂/ThO₂ ratios, with special attention to the moderation properties, resonance absorption behavior, and the production of fissile ²³³U from thorium. In the single-rod model, the addition of ThO₂ slightly reduces initial reactivity but leads to favorable breeding characteristics due to the generation of ²³³U, which contributes to sustained fission over time. In the full assembly configuration, moderation effects and inter-rod neutron interactions further influence the reactivity trends and spatial flux profiles. Results demonstrate that mixed UO₂/ThO₂ fuel exhibits competitive neutronic behavior when compared to conventional UO₂ fuel, with notable advantages in terms of fissile regeneration and longer fuel cycle potential. Moreover, the thorium content contributes to flattening the power distribution across the assembly, which may reduce localized thermal stresses and improve fuel utilization. These findings highlight the feasibility of incorporating thorium into SMR fuel designs and encourage further investigation into thermo-mechanical performance and reprocessing implications. The study supports the development of advanced fuel cycles aligned with the goals of next-generation reactor technologies.






08:00 SUMMIT PLENARY - Dusit Ballroom
12:00 LUNCH - Tradewinds Café

SESSION:
CompositeThuPM1-R1
Meyers International Symposium (11th Intl. Symp. on Composite, Ceramic & Nano Materials Processing, Characterization & Applications)
Thu. 20 Nov. 2025 / Room: Dusit 1
Session Chairs: Lisley Madeira Coelho; Student Monitors: TBA

13:00: [CompositeThuPM101] OS
NEUTRONIC AND THERMAL PERFORMANCE ASSESSMENT OF A FUEL ROD IN SMR-TYPE REACTORS: A COMPARATIVE STUDY OF ZIRCALOY-4 AND STAINLESS STEEL CLADDING
Sergio Monteiro1; Thomaz Jacintho Lopes1
1Military Institute of Engineering, Rio de Janeiro, Brazil
Paper ID: 65 [Abstract]

The design and material selection for fuel rods in Small Modular Reactors (SMRs) play a critical role in ensuring both the neutronic efficiency and thermal safety of the reactor core. This study presents a detailed comparative analysis of the neutronic behavior and heat transfer performance of a standard fuel rod configuration using two distinct cladding materials: Zircaloy-4 and stainless steel. Simulations were conducted using the SCALE code package, employing modules suitable for neutron transport and heat generation modeling under steady-state conditions.The investigation focused on key parameters such as the effective multiplication factor (k-eff), neutron flux distribution, and axial power profile, as well as the impact of cladding material on heat conduction away from the fuel. Zircaloy-4, known for its low neutron absorption cross-section and favorable thermal conductivity, demonstrated higher neutronic reactivity and improved thermal performance compared to stainless steel. However, the use of stainless steel—often considered for its mechanical robustness and corrosion resistance—resulted in increased parasitic neutron absorption and a corresponding decrease in reactivity, requiring compensatory design adjustments.The comparative results underscore the trade-offs inherent in cladding material selection, particularly in advanced reactor systems like SMRs where compact core design and passive safety features are prioritized. The findings contribute to the optimization of fuel design by providing quantitative insights into how material choices affect reactor behavior at both the neutronic and thermal levels. This study supports ongoing efforts in the development of next-generation reactors by highlighting material-performance interdependencies that must be carefully considered during the early stages of reactor design and licensing.



14:20 POSTERS - Ballroom Foyer

SESSION:
CompositeThuPM2-R1
Meyers International Symposium (11th Intl. Symp. on Composite, Ceramic & Nano Materials Processing, Characterization & Applications)
Thu. 20 Nov. 2025 / Room: Dusit 1
Session Chairs: Verônica Scarpini Candido; Student Monitors: TBA

15:05: [CompositeThuPM207] OS
PROPOSAL AND EVALUATION OF A ZIRCALOY-4/SiC COMPOSITE ENCAPSULATION FOR UO₂ FUEL PELLETS: A COMPARATIVE ANALYSIS WITH METALLIC AND CERAMIC ALTERNATIVES
Sergio Monteiro1; Thomaz Jacintho Lopes1
1Military Institute of Engineering, Rio de Janeiro, Brazil
Paper ID: 66 [Abstract]

Fuel cladding and encapsulation materials are fundamental to the structural integrity, thermal management, and neutronic performance of nuclear fuel assemblies. This study proposes the use of a hybrid composite material based on Zircaloy-4 reinforced with silicon carbide (SiC) for the encapsulation of UO₂ fuel pellets, aiming to enhance both the thermal and mechanical properties of the fuel system while maintaining favorable neutronic characteristics. The proposed Zircaloy-4/SiC composite is evaluated and compared with conventional metallic cladding materials, such as standard Zircaloy-4 and stainless steel, as well as ceramic encapsulants like stabilized zirconia (ZrO₂).The analysis considers key parameters including thermal conductivity, neutron absorption cross-section under normal and transient operating conditions. Simulations conducted using the SCALE code system assess the impact of the composite on reactivity, heat distribution, and fuel temperature profiles. Preliminary results indicate that the inclusion of SiC enhances the high-temperature performance of the cladding, while the Zircaloy-4 matrix preserves the low neutron absorption desirable for maintaining core reactivity. When compared to zirconia, the Zircaloy-4/SiC composite offers superior thermal conductivity and reduced swelling under irradiation, albeit with slightly higher neutron absorption. Nonetheless, the composite exhibits a balanced profile that combines the structural advantages of ceramics with the neutronic compatibility of metallic alloys. These findings support the viability of metal-matrix composite encapsulation as a promising pathway for accident-tolerant fuel (ATF) designs in advanced reactor systems, including SMRs and Generation IV concepts. Further experimental validation is recommended to confirm fabrication feasibility and in-reactor behavior.



15:45 COFFEE BREAK/POSTERS - Ballroom Foyer