FLOGEN Logo
In Honor of Nobel Laureate Dr. Aaron Ciechanover

SIPS 2025 logo
SIPS 2025 takes place from November 17-20, 2025 at the Dusit Thani Mactan Resort in Cebu, Philippines

Honoree Banner

More than 400 abstracts submitted from over 50 countries
Abstracts Still Accepted for a Limited Time



Featuring many Nobel Laureates and other Distinguished Guests


Back

RICE HUSK VALORIZATION VIA COMPOSITE MATERIALS
Henry Alonso Colorado Lopera1; Sergio Monteiro2; Marc Meyers3
1Universidad de Antioquia, Medellín, Colombia; 2Military Institute of Engineering, Rio de Janeiro, Brazil; 3University of California San Diego, La Jolla, United States

PAPER: 103/Composite/Regular (Oral) OS
SCHEDULED: 14:25/Thu. 20 Nov. 2025/Dusit 1

ABSTRACT:

Recycling natural fibers is essential for advancing environmental sustainability, as it helps reduce waste, conserve resources, and minimize the ecological footprint of textile production. While fibers like cotton, wool, and linen are biodegradable, their disposal in landfills still contributes to pollution and the depletion of valuable materials. By recycling these fibers, we can extend their lifecycle, lessen reliance on virgin fiber production—which typically requires significant water, energy, and chemical inputs—and promote more sustainable industrial practices.

Moreover, recycling natural fibers aligns with the principles of a circular economy by encouraging responsible consumption and production, reducing greenhouse gas emissions, and limiting the accumulation of textile waste. In parallel, reinforcing polymer matrices with natural fibers is emerging as a promising approach to enhance both the environmental and economic sustainability of polymer-based products, while expanding their applicability in various engineering fields.

This study explores the fabrication of composite materials reinforced with rice husk, an agricultural byproduct. A comprehensive evaluation is provided, including scanning electron microscopy and tensile testing, alongside a statistical analysis of tensile data using the Weibull distribution. Utilizing rice husk in engineered composites not only extends the utility of this organic waste but also supports sustainability efforts and offers potential socio-economic advantages at the community level. The study presents several case examples involving both polymer and inorganic matrices, utilizing both traditional and additive manufacturing techniques.

REFERENCES:
[1] Barreto, G., Restrepo, S., Vieira, C. M., Monteiro, S. N., & Colorado, H. A. (2024). Rice husk with PLA: 3D filament making and additive manufacturing of samples for potential structural applications. Polymers, 16(2), 245.
[2] Rendón, J., Giraldo, C. H., Monyake, K. C., Alagha, L., & Colorado, H. A. (2023). Experimental investigation on composites incorporating rice husk nanoparticles for environmental noise management. Journal of Environmental Management, 325, 116477.