Our previous study has been shown that treatment of coated conductors (CC) under high pressure - high temperature conditions can lead to further increase of critical current density especially in low magnetic fields [1]. Treatment under 100 bar of oxygen for 3 h of GdBCO_CC via Ag layer (which covered superconducting layer of CC) at 600 °C led to an increase in Jc (77 K, 0 T) from 2.57 to 2.67 MA/cm2. The charge carrier density nH(100 K) increased from 6.55´1021 to 6.91´1021 cm-3, and Jc(5 K, 0 T) =28.94 MA/cm2 was observed after the treatment. The increase in Jc (77 K, 0 T) from 2.10 to 2.28 MA/cm2 for GdBCO_CC which was oxygenated without Ag layer (etched by acid before oxygenation) was observed after treatment at 300 °C under 100 bar of O2 for 3 h. In the both cases c-parameter of Gd123 decreased from 1.1735(1) to 1.1731(0) nm. The increase of critical current density is connected with overdoping by oxygen and thus by charge carriers of the superconducting GdBCO layer. Oxygenation under 160 bar pressure at 800 oC for 3h of tetragonal YBa2Cu3Ox film deposited on single crystalline strontium titanate substrate allowed to obtain critical current density Jc (77 K, 0 T) = 4.09 MA/cm2 and Jc(5 K, 0 T) = 38.2 MA/cm2. The value of Jc (77 K, 0 T) turned out to be twice as high as when saturated with oxygen under a pressure of 1 bar. As a result of oxygenation, c-parameter of YBa2Cu3Ox decreased from 1.1711(2) down to 1.1681(3) nm. This work was supported in part by the funds from MICIU/AEI/FEDER for SUPERENERTECH (PID2021–127297OB-C21), FUNFUTURE “Severo Ochoa” (CEX2019–000917-S); MUGSUP (UCRAN20088) project from CSIC scientific cooperation with Ukraine; Catalan Government 2021 SGR 00440; and NAS of Ukraine Project III-7-24 (0788).