FLOGEN Logo
In Honor of Nobel Laureate Dr. Aaron Ciechanover

SIPS 2025 logo
SIPS 2025 takes place from November 17-20, 2025 at the Dusit Thani Mactan Resort in Cebu, Philippines

Honoree Banner

More than 400 abstracts submitted from over 50 countries
Abstracts Still Accepted for a Limited Time



Featuring many Nobel Laureates and other Distinguished Guests


Back

DEVELOPMENT OF POLYCARBONATE NANOFIBERS WITH REDUCED GRAPHENE OXIDE FOR THE PRODUCTION OF ELECTROMAGNETIC RADIATION ABSORBING MATERIALS IN VESSELS
Clarissa De Paula Dias1; Bruno Cunha, Sousa Da1; Ricardo Pondé Weber1; Sergio Monteiro1; Édio Junior1
1Military Institute of Engineering, Rio de Janeiro, Brazil

PAPER: 50/Composite/Keynote (Oral) OS
SCHEDULED: 14:45/Wed. 19 Nov. 2025/Dusit 1

ABSTRACT:

This study aims to develop a nanocomposite based on recycled polycarbonate (PC) with reduced graphene oxide (rGO), intended for applications in electromagnetic radiation absorbing materials (ERAM), with emphasis on stealth technologies applied to vessels [1]. The nanofibers were produced using the Solution Blow Spinning (SBS) process, aiming to maximize efficiency in electromagnetic radiation absorption [2-4]. The methodology involved the characterization of the individual components (PC and rGO) and the resulting nanocomposite through thermal analyses (DSC and TGA), gel permeation chromatography (GPC) to determine the molar mass of PC, and complementary techniques such as Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), and electromagnetic radiation absorption analysis using a vector network analyzer. The results demonstrated that incorporating different proportions of rGO into the PC significantly enhanced radiation absorption in the X-band, indicating the formation of a promising functional system for electromagnetic shielding applications. The combined analyses revealed a homogeneous morphological structure and suitable thermal and structural properties, confirming the potential of the developed nanocomposite as an efficient alternative for use in defense and security systems [5-6].

REFERENCES:
[1] HAUNG, Y. Robust thermoplastic polyurethane elastomers prepared from recycling polycarbonate. Polymer, v. 212, 2021.
[2] JANKOWSKI, P. Stable hydrophilic surface of polycarbonate. Sensors and Actuators B, v. 226, 2016.
[3] YUM, S. Synthesis and characterization of isosorbide based polycarbonates. Polymer, v. 179, 2019.
[4] ZHU, D. Sproduction and characterization of recycled polycarbonate based composite material containing recycled glass fibers. Journal of Environmental Chemical Engineering, v. 5, 2017
[5] COSTA, U. Effect of graphene oxide coating on natural fiber composite for multilayered ballistic armor. Polymers, v. 11, 2019.
[6] CARACTERIZAçãO físico-química da fibra de poliaramida irradiada por radiação ultravioleta e gama. São Paulo, SP: ABM, 2019.