FLOGEN Logo
In Honor of Nobel Laureate Dr. Aaron Ciechanover

SIPS 2025 logo
SIPS 2025 takes place from November 17-20, 2025 at the Dusit Thani Mactan Resort in Cebu, Philippines

Honoree Banner

More than 400 abstracts submitted from over 50 countries
Abstracts Still Accepted for a Limited Time



Featuring many Nobel Laureates and other Distinguished Guests


Back

EXPLORATORY STUDY ON THE EFFECT OF PIASSAVA FIBER ADDITION ON THE PERMANENT DEFORMATION OF CLAYEY SOIL
Lisley Madeira Coelho1; Murilo Miguel Narciso, Sr1; José Carlos Guimarães Júnior2; Sergio Monteiro1; Antônio Carlos Rodrigues Guimarães, Sr.1
1Military Institute of Engineering, Rio de Janeiro, Brazil; 2Government of the Federal District, Rio de Janeiro, Brazil

PAPER: 70/Composite/Regular (Oral) OS
SCHEDULED: 16:45/Tue. 18 Nov. 2025/Dusit 1

ABSTRACT:

Evaluating the permanent deformation of soils used in pavements or final earthwork layers is essential for designing highways and railways when adopting a mechanistic approach to structural design. However, due to environmental concerns, exploiting new soil deposits for such projects has become increasingly challenging, making soil stabilization or reinforcement a viable alternative. In this context, this study sought to explore the effect of adding piassava fibers to a clayey soil commonly found in subgrade layers in Brazil. Repeated load triaxial tests were conducted to assess permanent deformation under two pairs of deviator and confining stresses: (210, 70) and (450, 100) kPa, with 100,000 loading cycles applied at a frequency of 5 Hz. Resilient modulus tests were performed following national standards, using samples of natural soil, natural soil with 1.5% piassava fiber, and natural soil with 1.5% piassava fiber and 2% cement. Results showed that natural soil exhibited high permanent deformation under the higher stress pair, while the simple addition of fibers significantly reduced deformation. With the addition of cement, total permanent deformation was minimal, indicating that piassava fiber is a promising material for reinforcing pavements or earthworks.