FLOGEN Logo
In Honor of Nobel Laureate Dr. Aaron Ciechanover

SIPS 2025 logo
SIPS 2025 takes place from November 17-20, 2025 at the Dusit Thani Mactan Resort in Cebu, Philippines

Honoree Banner

More than 400 abstracts submitted from over 50 countries
Abstracts Still Accepted for a Limited Time



Featuring many Nobel Laureates and other Distinguished Guests

PLENARY LECTURES AND VIP GUESTS
no_photo

Dr. Yuki Sato

Saga University

Allergic And Inflammatory Airway Diseases: Potential Influence Of Oxidative Stress
Inufusa International Symposium (5th Intl. Symp. on Oxidative Stress for Sustainable Development of Human Beings)

Back to Plenary Lectures »

Abstract:

The respiratory system is essential for efficient gas exchange in the lungs and for maintaining airway clearance. Various factors, including allergies and inflammation, can adversely impact both respiratory function and the non-respiratory behaviors that protect the airways. Conditions such as asthma and other chronic respiratory diseases increase significant health risks, with an increasing number of cases reported. Moreover, allergic responses and chronic inflammation in the upper and lower airways can trigger excessive reflexes, such as sneezing and coughing, which may exacerbate respiratory conditions.
Research on oxidative stress in chronic airway diseases has demonstrated a correlation between chronic airway inflammation and elevated oxidative stress levels. Increased oxidative stress may affect not only inflammation in peripheral tissues but also the central mechanisms that regulate coughing and sneezing. However, theoretical evidence on this topic remains limited. In this overview, we will outline the clinical features of allergic and inflammatory respiratory diseases, including allergic rhinitis and asthma. We will also highlight the basic peripheral and central mechanisms controlling airway reflexes, including sneezing and coughing.
In addition, we will explore the relationships between respiratory disorders and oxidative stress and propose potential benefits of antioxidants, such as Twendee X®, in alleviating pathogenic respiratory distress and reducing hypersensitivity of airway protective reflexes.