Flogen
In Honor of Nobel Laureate Prof. Ferid Murad


SIPS2021 has been postponed to Nov. 27th - Dec. 1st 2022
at the same hotel, The Hilton Phuket Arcadia,
in Phuket, Thailand.
Please click here for more details
Logo
Banner

Abstract Submission Open! About 300 abstracts submitted from about 40 countries


Featuring 9 Nobel Laureates and other Distinguished Guests

List of Accepted Abstracts

As of 03/05/2024: (Alphabetical Order)
  1. Dmitriev International Symposium (6th Intl. Symp. on Sustainable Metals & Alloys Processing)
  2. Horstemeyer International Symposium (7th Intl. symp. on Multiscale Material Mechanics and Sustainable Applications)
  3. Kipouros International Symposium (8th Intl. Symp. on Sustainable Molten Salt, Ionic & Glass-forming Liquids and Powdered Materials)
  4. Kolomaznik International Symposium (8th Intl. Symp. on Sustainable Materials Recycling Processes and Products)
  5. Marcus International Symposium (Intl. symp. on Solution Chemistry Sustainable Development)
  6. Mauntz International Symposium (7th Intl. Symp. on Sustainable Energy Production: Fossil; Renewables; Nuclear; Waste handling , processing, and storage for all energy production technologies; Energy conservation)
  7. Nolan International Symposium (2nd Intl Symp on Laws and their Applications for Sustainable Development)
  8. Navrotsky International Symposium (Intl. symp. on Geochemistry for Sustainable Development)
  9. Poveromo International Symposium (8th Intl. Symp. on Advanced Sustainable Iron and Steel Making)
  10. Trovalusci International Symposium (17th Intl. Symp. on Multiscale and Multiphysics Modelling of 'Complex' Material (MMCM17) )
  11. Virk International Symposium (Intl Symp on Physics, Technology and Interdisciplinary Research for Sustainable Development)
  12. Yoshikawa International Symposium (2nd Intl. Symp. on Oxidative Stress for Sustainable Development of Human Beings)
  13. 6th Intl. Symp. on New and Advanced Materials and Technologies for Energy, Environment and Sustainable Development
  14. 7th Intl. Symp. on Sustainable Secondary Battery Manufacturing and Recycling
  15. 7th Intl. Symp. on Sustainable Cement Production
  16. 7th Intl. Symp. on Sustainable Surface and Interface Engineering: Coatings for Extreme Environments
  17. 8th Intl. Symp. on Composite, Ceramic and Nano Materials Processing, Characterization and Applications
  18. International Symposium on Corrosion for Sustainable Development
  19. International Symposium on COVID-19/Infectious Diseases and their implications on Sustainable Development
  20. 4th Intl. Symp. on Sustainability of World Ecosystems in Anthropocene Era
  21. 3rd Intl. Symp. on Educational Strategies for Achieving a Sustainable Future
  22. 3rd Intl. Symp. on Electrochemistry for Sustainable Development
  23. 9th Intl. Symp. on Environmental, Policy, Management , Health, Economic , Financial, Social Issues Related to Technology and Scientific Innovation
  24. 7th Intl. Symp. on Sustainable Production of Ferro-alloys
  25. 2nd Intl Symp on Geomechanics and Applications for Sustainable Development
  26. 3rd Intl. Symp.on Advanced Manufacturing for Sustainable Development
  27. 5th Intl. Symp. on Sustainable Mathematics Applications
  28. Intl. Symp. on Technological Innovations in Medicine for Sustainable Development
  29. 7th Intl. Symp. on Sustainable Mineral Processing
  30. 7th Intl. Symp. on Synthesis and Properties of Nanomaterials for Future Energy Demands
  31. International Symposium on Nanotechnology for Sustainable Development
  32. 8th Intl. Symp. on Sustainable Non-ferrous Smelting and Hydro/Electrochemical Processing
  33. 2nd Intl. Symp. on Physical Chemistry and Its Applications for Sustainable Development
  34. 2nd Intl Symp on Green Chemistry and Polymers and their Application for Sustainable Development
  35. 8th Intl. Symp. on Quasi-crystals, Metallic Alloys, Composites, Ceramics and Nano Materials
  36. 2nd Intl Symp on Solid State Chemistry for Applications and Sustainable Development
  37. Summit Plenary
  38. Modelling, Materials and Processes Interdisciplinary symposium for sustainable development
  39. 8TH INTL. SYMP. ON QUASI-CRYSTALS, METALLIC ALLOYS, COMPOSITES, CERAMICS AND NANO MATERIALS

    To be Updated with new approved abstracts

    Tuning PEDOT: PSS Synthesis for Enhanced Electrical Conductivity
    Phimchanok Sakunpongpitiporn1; Natlita Thummarungsan1; Kornkanok Rotjanasuworapong1; Katesara Phasuksom1; Anuvat Sirivat1;
    1CHULALONGKORN UNIVERSITY, Bangkok, Thailand;
    sips20_8_170

    Poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT: PSS) is the most interesting CPs; it has the highest electrical conductivity when compared to other CPs [1]. Moreover, it possesses many useful properties such as a low band gap energy, superior electrochemical and thermal stabilities, and high transparency [2]. In this work, PEDOT: PSS nanoparticles in powder form with high electrical conductivity was synthesized by chemical oxidative polymerization. In addition, the effects of acid types and EDOT: PSS weight ratio were investigated. For the effect of acid types, at the 0.5 EDOT: 5.5 PSS weight ratio in 0.1 M HClO4 was the best condition to obtain 1.04 x 104 ± 188 Scm-1 due to the multiple dopants (ClO4-, PSS-, SO42-). For the effect of EDOT: PSS weight ratio, at the 0.5 EDOT: 5.5 PSS weight ratio in 0.1 M HClO4 was the proper condition as it provided the high amount of dopant (ClO4-, PSS-, SO42- ) available to interact with PEDOT chain. These results were verified by Fourier transformed infrared spectroscopy, UV-VIS spectrometry, X-ray photoelectron spectrometry, and thermogravimetric analysis. The particle shapes of PEDOT: PSS synthesized in all conditions were spherical. The particle size of PEDOT: PSS varied from 21.15 ± 2.60 to 33.79 ± 2.27 nm.

    Keywords:
    Nanoparticles;


    References:
    [1] Cho, A., Kim, S., Kim, S., Cho, W., Park, C., Kim, F.S., Kim, J. H., J. Polym. Sci. Pt. B-Polym. Phys., 54 (2016) 1530-1536.
    [2] Hossain, J., Liu, Q., Miura, T., Kasahara, K., Harada, D., Ishikawa, R., Ueno, K. and Shirai, H., ACS Appl. Mater. Interfaces, 8 (2016) 31926-31934.



    Verification of T-x-y diagrams for the Ag-Cu-Ni-Au-Sn system
    Vasily Lutsyk1; Vera Vorob'Eva1; Maria Parfenova1;
    1INSTITUTE OF PHYSICAL MATERIALS SCIENCE SB RAS, Ulan-Ude, Russian Federation;
    sips20_8_209

    The detailed analysis of ternary systems that form the quinary Ag-Au-Cu-Ni-Sn has been performed to assemble 3D computer models of T-x-y diagrams. The usual 3 steps were followed [1]: (1) scheme of mono- and non-variant states in table and space (3D) forms, (2) phase diagram (PD) prototype and (3) T-x-y diagram of the real system. E.g., there are 14 invariant transformations within the system Ag-Cu-Sn (6 of them with the liquid phase participation). As a result, T-x-y diagram, Ag-Cu-Sn includes 56 horizontal (isothermal) planes and 111 ruled surfaces. Besides, it is formed by 8 pairs of liquidus and solidus surfaces, 4 surfaces of transus and 54 surfaces of solvus (33 of them is degenerated into the vertical edges of the prism). In total, PD consists of 241surfaces and 88 phase regions. Space (3D) computer model was tested by 3 isothermal and 5 polythermal cuts in the Atlas [2]. Errors were found: on isothermal cut 221оC in [2, p. 179] which is pictured an extra phase region L+C+R2, and on the isopleths via point Е an extra phase region L+R2+R8 is depicted. An error, that violates the rule of contacting state spaces (two two- phase regions are adjacent), and three more inaccuracies are found [2, c. 181] on the isopleth А-S (0, 0.82, 0.18). Other 3 isopleths don’t contain the contradictions between the [2] and model variants. Analysis of all four ternary systems, forming the Ag-Cu-Ni-Sn quaternary system (A- B-C-D), led to a scheme of di-, mono and invariant states, formally describing the geometric structure of the T-x-y-z diagram. According to this scheme, it’s possible to say, that T-x-y-z diagram contains 11 hypersurfaces of liquidus and the region of liquid immiscibility. In addition to Ag (A), Sn (D) and Cu (Ni) or B (C) solid solution, as well as seven compounds, including the R3 (R9) solid solution, there is an internal liquidus surfaces of the R11 compound and a low- temperature polymorphic modification of the R9 (Ni 3 Sn) compound. Seven invariant transformations are expected, including five of quasiperitectical type, one - euthetic and one of polymorphic transformation between allotropic forms of Ni3Sn2. Partial validation of the geometric structure forecast of the quaternary system liquidus can be carried out based on the experiments [3-4] with alloys, rich in Sn (80, 90, 95 and 97 at. %) at 210oC and at 250oC. This work was been performed under the program of fundamental research SB RAS (project 0336- 2019-0008), and it was partially supported by the RFBR project 19-38-90035.

    Keywords:
    3D; Alloys; Modeling; Melt; Materials


    References:
    1. Lutsyk V.I., Vorob'eva V.P. Three-Dimensional Model of Phase Diagram of Au-Bi-Sb
    System for Clarification of Thermodynamic Calculations // Rus. J. Phys. Chem. 2015. V. 89. No
    10. P. 1715-1722.
    2. Atlas of Phase Diagrams for Lead-Free Soldering compiled by A. Dinsdale, A.
    Watson, A. Kroupa et al. COST 531. ES Foundation, Brno, Czech Republic, 2008. V. 1. 289 pp.
    3. C.-N. Chiu, Y.-C. Huang, A.-R. Zi and S.-W. Chen. Isoplethal Sections of the Liquidus
    Projection and the 250 o C Phase Equilibria of the Sn-Ag-Cu-Ni Quaternary System at the Sn-Rich
    Corner // Materials Transactions. 2005. V. 46. No. 11. P. 2426-2430.
    4. S.-W. Chen, C.-N. Chiu, K.-C. Hsien. Phase Equilibria of the Sn-Ag-Cu-Ni
    Quaternary System at 210 o C // Journal of Electronic Materials, V. 36. No. 3. 2007. P. 197-206.






    To be Updated with new approved abstracts