Flogen
In Honor of Nobel Laureate Prof. Ferid Murad


SIPS2021 has been postponed to Nov. 27th - Dec. 1st 2022
at the same hotel, The Hilton Phuket Arcadia,
in Phuket, Thailand.
Please click here for more details
Logo
Banner

Abstract Submission Open! About 300 abstracts submitted from about 40 countries


Featuring 9 Nobel Laureates and other Distinguished Guests

List of Accepted Abstracts

As of 26/04/2024: (Alphabetical Order)
  1. Dmitriev International Symposium (6th Intl. Symp. on Sustainable Metals & Alloys Processing)
  2. Horstemeyer International Symposium (7th Intl. symp. on Multiscale Material Mechanics and Sustainable Applications)
  3. Kipouros International Symposium (8th Intl. Symp. on Sustainable Molten Salt, Ionic & Glass-forming Liquids and Powdered Materials)
  4. Kolomaznik International Symposium (8th Intl. Symp. on Sustainable Materials Recycling Processes and Products)
  5. Marcus International Symposium (Intl. symp. on Solution Chemistry Sustainable Development)
  6. Mauntz International Symposium (7th Intl. Symp. on Sustainable Energy Production: Fossil; Renewables; Nuclear; Waste handling , processing, and storage for all energy production technologies; Energy conservation)
  7. Nolan International Symposium (2nd Intl Symp on Laws and their Applications for Sustainable Development)
  8. Navrotsky International Symposium (Intl. symp. on Geochemistry for Sustainable Development)
  9. Poveromo International Symposium (8th Intl. Symp. on Advanced Sustainable Iron and Steel Making)
  10. Trovalusci International Symposium (17th Intl. Symp. on Multiscale and Multiphysics Modelling of 'Complex' Material (MMCM17) )
  11. Virk International Symposium (Intl Symp on Physics, Technology and Interdisciplinary Research for Sustainable Development)
  12. Yoshikawa International Symposium (2nd Intl. Symp. on Oxidative Stress for Sustainable Development of Human Beings)
  13. 6th Intl. Symp. on New and Advanced Materials and Technologies for Energy, Environment and Sustainable Development
  14. 7th Intl. Symp. on Sustainable Secondary Battery Manufacturing and Recycling
  15. 7th Intl. Symp. on Sustainable Cement Production
  16. 7th Intl. Symp. on Sustainable Surface and Interface Engineering: Coatings for Extreme Environments
  17. 8th Intl. Symp. on Composite, Ceramic and Nano Materials Processing, Characterization and Applications
  18. International Symposium on Corrosion for Sustainable Development
  19. International Symposium on COVID-19/Infectious Diseases and their implications on Sustainable Development
  20. 4th Intl. Symp. on Sustainability of World Ecosystems in Anthropocene Era
  21. 3rd Intl. Symp. on Educational Strategies for Achieving a Sustainable Future
  22. 3rd Intl. Symp. on Electrochemistry for Sustainable Development
  23. 9th Intl. Symp. on Environmental, Policy, Management , Health, Economic , Financial, Social Issues Related to Technology and Scientific Innovation
  24. 7th Intl. Symp. on Sustainable Production of Ferro-alloys
  25. 2nd Intl Symp on Geomechanics and Applications for Sustainable Development
  26. 3rd Intl. Symp.on Advanced Manufacturing for Sustainable Development
  27. 5th Intl. Symp. on Sustainable Mathematics Applications
  28. Intl. Symp. on Technological Innovations in Medicine for Sustainable Development
  29. 7th Intl. Symp. on Sustainable Mineral Processing
  30. 7th Intl. Symp. on Synthesis and Properties of Nanomaterials for Future Energy Demands
  31. International Symposium on Nanotechnology for Sustainable Development
  32. 8th Intl. Symp. on Sustainable Non-ferrous Smelting and Hydro/Electrochemical Processing
  33. 2nd Intl. Symp. on Physical Chemistry and Its Applications for Sustainable Development
  34. 2nd Intl Symp on Green Chemistry and Polymers and their Application for Sustainable Development
  35. 8th Intl. Symp. on Quasi-crystals, Metallic Alloys, Composites, Ceramics and Nano Materials
  36. 2nd Intl Symp on Solid State Chemistry for Applications and Sustainable Development
  37. Summit Plenary
  38. Modelling, Materials and Processes Interdisciplinary symposium for sustainable development
  39. 3RD INTL. SYMP.ON ADVANCED MANUFACTURING FOR SUSTAINABLE DEVELOPMENT

    To be Updated with new approved abstracts

    Generation of fine grain layers near frictional interfaces in metal forming processes.
    Sergei Alexandrov1;
    1INSTITUTE FOR PROBLEMS IN MECHANICS, Moscow, Russian Federation;
    sips20_48_184

    Narrow fine grain layers of material are often generated in the vicinity of frictional interfaces in manufacturing processes as a result of severe shear deformation. These layers change some surface properties of machine parts. The latter affects the performance of structures and machine parts under service conditions. Therefore, it is of importance to develop a method to connect parameters of manufacturing processes and parameters that characterize properties of fine grain layers generated by these processes. The strain rate intensity factor is the coefficient of the leading singular term in a series expansion of the equivalent strain rate in the vicinity of maximum friction surfaces. Such expansions are available for several material models that are often adopted to describe the response of material in metal forming processes. The objective of the present paper is to develop a general approach to use the strain rate intensity factor for predicting the evolution of material properties within the fine grain layers. The present paper includes a conceptual approach, experimental results on upsetting and drawing and a special numerical method for calculating the strain rate intensity factor. The latter is necessary since the strain rate intensity factor appears in singular solutions and conventional finite element methods are not capable of calculating this factor. The method proposed is based on the method of characteristics. Two criteria for the thickness of the fine grain layer are considered.

    Keywords:
    High strain-rate phenomena; Mechanics; Metal forming; Surface engineering/Wear, Non-conventional techniques;



    Manufacture of the Invar Fine Metal Mask Using an Electroforming Technique
    I.G. Kim1; Y.B. Park2;
    1, Suncheon, Republic of South Korea; 2SUNCHON NATIONAL UNIVERSITY, Suncheon, Republic of South Korea;
    sips20_48_31

    In the manufacturing processes of red-green-blue (RGB)-type organic light emitting diode (OLED) displays, Invar (Fe-36 wt.% Ni alloy) is used as a material for the fine metal mask (FMM), which guides the evaporated diode materials through its small holes onto the correct positions of the substrate glass. Because the hole size of the FMM should not change during the evaporation process, Invar, whose thermal expansivity approaches zero[1], must be used for the FMM material. For high-quality color images in the display, the thickness of the FMM needs to be thinner [2]. Contrary to the conventional top-down method of producing Invar, a bottom-up approach of electroforming is a promising technology for producing very thin FMMs. The present authors have recently presented that the electroformed Invar via sophisticated heat treatment exhibits the coefficient of thermal expansion (CTE) lower than that of the conventional Invar [3]. The current work has been aimed at investigating the effect of the microstructure evolution on the CTE during heat treatment in electroformed Invar. Finally, we propose optimal process conditions to manufacture the Invar FMM applied for an ultra high definition (UHD) grade of the OLED display.

    Keywords:
    Metals;


    References:
    [1] Guillaume, C.É. Recherches sur les aciers au nickel. Dilatations aux températures élevées; résistance électrique. Comp. Rend. Acard. Sci. 1897, 125, 235–238.
    [2] Kim, C.W.; Kim, K.S.; Park, J.K.; Kim, D.H.; Jung, K.R. FMM Material and Manufacturing Process for UHD Resolution AMOLED Displays, SID 2019 DIGEST. 2019, 1079-1082.
    [3] Park, Y.B.; Kim, I.G. The Gain of Low Thermal Expansivity via Phase Transition in Electroformed Invar, Coatings. 2018, 8, 169.



    [Smart Material Systems]
    Microstructure Modeling of Uniform Droplet Sprayed Deposits for Mg Alloy-Based Additive Manufacturing
    Charalabos Doumanidis1;
    1VIN UNIVERSITY, Hanoi, Vietnam;
    sips20_48_47

    This article addresses modeling of the solidifying material structure during 3D welding/printing of fully dense Mg alloy products by fused deposition of molten droplets from a uniform droplet spray source on a motorized X-Y table substrate [1]. The resulting crystallite size distribution is simulated by a solidification model consisting of nucleation/fragmentation and constrained growth description, calibrated via structural data from a single droplet splat [2]. This is enabled by a semi-analytical thermal modeling framework, based on superposition of moving Green's and Rosenthal functions for the temperature field from a Gaussian source distribution [3], in which the deposit solid geometry and heat transfer boundary conditions are accounted for by mirror source images of modulated efficiency [4]. The simulation model is implemented for layered ellipsoidal deposit sections on planar substrates by multi-pass spraying, and its predictions are validated against measured crystal size by image analysis of experimental micrographs of a Mg97ZnY2 alloy, to an error margin of +15%. The computationally efficient simulation provides insight to the deposit microstructure, and is intended as a process observer in a closed-loop, adaptive control scheme based on infrared temperature measurements.

    Keywords:
    Ferrous and non-ferrous materials; Metals;


    References:

    [1] Fukuda H, "Droplet-Based Processing of Magnesium Alloys for the Production of High-Performance Bulk Materials", PhD Thesis, MIE Dept, Northeastern University, Boston, MA (2009). [2] Ioannou Y, Fukuda H, Rebholz C, Liao Y, Ando T. Doumanidis C.C, "Constrained crystal growth during solidification of particles and splats in uniform droplet sprays", Int J Adv Manuf Technol 107, 1205–1221 (2020). [3] Rosenthal, D., "Mathematical Theory of Heat Distribution During Welding and Cutting", Welding Journal 20 (5), (1941), pp. 220s - 234s [4] Carslaw, H.S., Jaeger, J.C., Conduction of Heat in Solids, 2nd Ed, Oxford Science Publ. (1951)




    Oxidation resistance of Ti-Al-C MAX phases-based bulk materials and coatings at high-temperatures
    Tetiana Prikhna1; Orest Ostash2; Alexander Kuprin3; Viktoriya Podhurska4; Thierry Cabioc'H5; Tetiana Serbenyuk6; Viktor Moshchil7; Vladimir Sverdun6; Myroslav Karpets7; Semyon Ponomarov8; Alexandra Starostina6; Fernand D. S. Marquis9; Florian Kongoli10;
    1V. BAKUL INSTITUTE FOR SUPERHARD MATERIALS NASU, Kiev, Ukraine; 2KARPENKO PHYSICAL-MECHANICAL INSTITUTE OF THE NATIONAL ACADEMY OF SCIENCES OF UKRAINE, Lviv, Ukraine; 3NATIONAL SCIENCE CENTER KHARKOV INSTITUTE OF PHYSICS AND TECHNOLOGY, Kharkov, Ukraine; 4PHYSICO-MECHANICAL INSTITUTE OF THE NATIONAL ACADEMY OF SCIENCES OF UKRAINE, Lviv, Ukraine; 5UNIVERSITE DE POITIERS, CNRS/LABORATOIRE PHYMAT, Chasseneuil Futuroscope Cedex, France; 6INSTITUTE FOR SUPERHARD MATERIALS OF THE NATIONAL ACADEMY OF SCIENCES OF UKRAINE, Kiev, Ukraine; 7INSTITUTE FOR SUPERHARD MATERIALS, Kiev, Ukraine; 8INSTITUTE OF SEMICONDUCTOR PHYSICS, Kiev, Ukraine; 9UNITED NANO TECHNOLOGIES (UNT) AND INTEGRATED MATERIALS TECHNOLOGIES AND SYSTEMS (IMTS), Rapid City, United States; 10FLOGEN TECHNOLOGIES, Mont-Royal, Canada;
    sips20_48_284

    The, results of variations of structure in oxidizing atmosphere at high temperatures (after heating and thermocycling up to 600 – 1400 oC), and electrical conductivity (after long time heating at 600 oC) of MAX Ti2AlC-, Ti3AlC2- and (Ti,Nb)3AlC2-based bulk materials with different porosity (prepared by synthesis in vacuum and/or by hot pressing) and coatings (vacuum-arc deposited) are presented. The characteristics of highly dense Ti-Al-C composite bulks and vacuum-arc deposited 6 m thick coatings before and after heating at 600 °C in air for 1000 h were compared. High electrical conductivity ((The, results of variations of structure in oxidizing atmosphere at high temperatures (after heating and thermocycling up to 600 – 1400 oC), and electrical conductivity (after long time heating at 600 oC) of MAX Ti2AlC-, Ti3AlC2- and (Ti,Nb)3AlC2-based bulk materials with different porosity (prepared by synthesis in vacuum and/or by hot pressing) and coatings (vacuum-arc deposited) are presented. The characteristics of highly dense Ti-Al-C composite bulks and vacuum-arc deposited 6 &#181;m thick coatings before and after heating at 600 °C in air for 1000 h were compared. High electrical conductivity (delta m/S =1.3•106 S/m) of the highly resistant toward oxidation (delta m/S=0.07 mg/cm2) Ti-Al-C coating was preserved after long-term heating in air. It was found that the specimen surface layers of MAX-phases Ti3AlC2 and Ti2AlC based bulks and chromium-containing Crofer 22APU steel became semiconductors because of high-temperature long-term oxidation (at 600 °C). The vacuum-arc deposited Ti-Al-C coating revealed high oxidation resistance and electrical conductivity along with good mechanical characteristics, namely nanohardness H (10 mN)= 9.5±1.5 GPa, and Young’s modulus E=190±10 GPa, which make it very promising for interconnects of solid oxide fuel cells (SOFCs).
    Acknowledgements
    The investigations were performed in the frames of the project NATO SPS G5773 “Advanced Material Engineering to Address Emerging Security Challenges” for 2020-2023, the project 03-03-20 of Ukrainian-Belorussian cooperation for 2020-2021, and the projects III-3-20 (0779), III-5-19 (0778), and II-5-19 (ІНМ-29/20) supported by the National Academy of Sciences of Ukraine.

    Keywords:
    Composites; Energy; Multifunctional materials; Nanocomposites; Nanostructured materials;



    Special Titanium Alloys Deposition by Directed Energy Deposition System
    Jan Dzugan1; Libor Kraus1;
    1COMTES FHT INC., Dobrany, Czech Republic;
    sips20_48_268

    As the additive manufacturing (AM) processes are developing and expanding their capabilities and subsequently also application fields, new alloys are being implemented in order to fulfil specific requirements for highly demanding applications. In the current paper, beta-titanium alloy Ti-13Zr13Nb is investigated. This materials is special due to low elastic modulus and its certification for bio applications. The experimental material is deposited by powder blown directed energy deposition process. Microstructure and local mechanical properties at room temperature under quasi-static loading conditions are investigated here. Optical and electron microscopy investigations including EBSD analyses are carried out here in order to provide detailed information on the microstructure of the AM deposited material. Mechanical properties in terms of tensile properties are investigated using miniaturized tensile test specimens excised in various orientations regarding the deposition process. Microstructure and mechanical properties homogeneity together with imperfections observations are investigated for the material of interest. Obtained results are compared with properties of the other Ti-alloys produced in conventional way and by AM processes.






    To be Updated with new approved abstracts