2016 - Sustainable Industrial Processing Summit & Exhibition
sips2016-LOGO Symposium Banner sips2015-Banner
06 - 10 November 2016, Sanya Marriott Yalong Bay Resort & Spa, Hainan-Island China
More than 520 Abstracts submitted from 80 countries - Please contact us ASAP if you want to update an abstract or a full paper.
Summit
Venue
Information
Sponsorship
Submission
Program
Registration
Instructions
Post Summit
Previous Events
PLENARY LECTURES AND VIP GUESTS
Alfonso_Ngan

Alfonso Ngan

University of Hong Kong

Dynamics Of Full Dislocation-density Functions From Coarse-graining Discrete Dislocation Density-vector Fields
Yang International Symposium (3rd Intl. symp. on Multiscale Material Mechanics and Multiphysics and Sustainable Applications) [Multiscale Computational Mechanics ]

Back to Plenary Lectures »

Abstract:

Current strategies of computational crystal plasticity that focus on individual atoms or dislocations are impractical for real-scale, large-strain problems even with today’s computing power. Dislocation-density based approaches are a way forward but most schemes published to-date give a heavier weight on the consideration of geometrically necessary dislocations (GNDs), while statistically stored dislocations (SSDs) are either ignored or treated in ad hoc manners. In reality, however, the motions of GNDs and SSDs are intricately linked through their mutual (e.g. Taylor) interactions, and in fact, GNDs and SSDs are indistinguishable on a microstructural level, notwithstanding the fact that the GNDs are simply the portion of dislocations associated with the overall shape change of the crystal. A correct scheme for dislocation dynamics should therefore be the one commonly used in discrete dislocation dynamics (DDD) simulations, namely, an “all-dislocation” treatment that is equally applicable for all dislocations comprising both the GNDs and SSDs, with a rigorous description of the interactions between them. In this paper, a new formulation for computational dynamics of dislocation-density functions, based on the above “all-dislocation” principle, is discussed. The dynamic evolution laws for the dislocation densities are derived by coarse-graining the individual density vector fields of all the discrete dislocation lines in the system, without distinguishing between GNDs and SSDs. The mutual elastic interactions between dislocations are treated in full by generalizing the elastic interactions between dislocation segments for dislocation densities, and reducing the Hirth-Lothe line-integral formulation into an algebraic form comprising only elementary functions which are straightforward enough for efficient numerical implementation. Other features in the model include forest (Taylor) hardening, generation due to the connectivity nature of dislocations, and dipole annihilation.

Member Area

LOGIN

Translate site in 50+ languages
Flogen is not responsable for translation
Notebook

<<     May 2024     >>

  • MO
  • TU
  • WE
  • TH
  • FR
  • SA
  • SU
  • 29
  • 30
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9



Sanya Weather


Click Here




SIPS is the flagship event of FLOGEN STAR OUTREACH, a not-for-profit, non-political and all-inclusive science organization. SIPS as well as FLOGEN STARS OUTREACH takes no sides in political, scientific or technological debates. We equally welcome, without reservations, all spectrum of ideas, theories, technologies and related debates. Statements and opinions expressed are those of individuals and/or groups only and do not necessary reflect the opinions of FLOGEN, its sponsors or supporters.

foot
© FLOGEN Star OUTREACH | Home | Contact Us | Privacy Policy | Cancellations/Refund Policy

© Copyright of FLOGEN Stars Outreach Organization: The content of this page including all text and photos are copyright of FLOGEN Stars Outreach and none can be used in their original or in any modified or combined form in any publication, web site or in any other medium whatsoever without prior written permission of FLOGEN Stars Outreach.