2016 - Sustainable Industrial Processing Summit & Exhibition
sips2016-LOGO Symposium Banner sips2015-Banner
06 - 10 November 2016, Sanya Marriott Yalong Bay Resort & Spa, Hainan-Island China
More than 520 Abstracts submitted from 80 countries - Please contact us ASAP if you want to update an abstract or a full paper.
Summit
Venue
Information
Sponsorship
Submission
Program
Registration
Instructions
Post Summit
Previous Events
PLENARY LECTURES AND VIP GUESTS
no_photo

Jürgen Eckert

Erich Schmid institute of Materials Science

Tailoring Structure Formation And Properties Of Complex Metallic Materials
Dubois International Symposium (Intl Sympo. on Sustainable Complex Metallic Systems)

Back to Plenary Lectures »

Abstract:

In modern society, metallic materials are crucially important (e.g. for applications related to energy, safety, infrastructure, transportation, health, medicine, life sciences, IT). Contemporary examples of inherent challenges to be overcome are the design of ultrahigh specific strength materials. There is a critical need for successful developments in this area in particular for reduced energy consumption, reduction of pollutant emissions and passenger safety. Also, the ageing society makes biomedical materials for implant and stent design crucially important. A drawback of nearly all current high strength metallic materials is that they lack ductility (i.e. are brittle and hard to form) - or on the opposite side, they may be highly ductile but lack strength. Hence, it is mandatory to develop new routes for a creation of tailored metallic materials based on hierarchical hybrid structures enabling property as well as function optimization. One starting point along these lines is the design of monolithic amorphous materials or bulk micro-, ultrafine- or nano-structured composite structures with intrinsic length-scale modulation and phase transformation under highly non-equilibrium conditions. This can include the incorporation of dispersed phases which are close to or beyond their thermodynamic and mechanical stability limit thus forming hierarchically structured hybrid and ductile/tough alloys. Alternatively, the material itself can be designed in a manner such that it is on the verge of its thermodynamic/mechanical stability. This talk will present recent results obtained for metallic glass-based hybrid structures with transformation effects at different length-scales and microcrystalline-grained hybrid structures based on elastic instabilities and modulated length-scale. The deformation behaviour and possible phase transitions during deformation will be related to the intrinsic properties of the phases as well as the microstructure of the material including heterogeneities and length-scale modulation in order to derive guidelines for the design of macroscopically ductile high-strength materials. Finally, the results will be critically assessed from the viewpoint of possible scaling-up for technological applications and the use of simple and cost effective processing technologies.

Member Area

LOGIN

Translate site in 50+ languages
Flogen is not responsable for translation
Notebook

<<     May 2024     >>

  • MO
  • TU
  • WE
  • TH
  • FR
  • SA
  • SU
  • 29
  • 30
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9



Sanya Weather


Click Here




SIPS is the flagship event of FLOGEN STAR OUTREACH, a not-for-profit, non-political and all-inclusive science organization. SIPS as well as FLOGEN STARS OUTREACH takes no sides in political, scientific or technological debates. We equally welcome, without reservations, all spectrum of ideas, theories, technologies and related debates. Statements and opinions expressed are those of individuals and/or groups only and do not necessary reflect the opinions of FLOGEN, its sponsors or supporters.

foot
© FLOGEN Star OUTREACH | Home | Contact Us | Privacy Policy | Cancellations/Refund Policy

© Copyright of FLOGEN Stars Outreach Organization: The content of this page including all text and photos are copyright of FLOGEN Stars Outreach and none can be used in their original or in any modified or combined form in any publication, web site or in any other medium whatsoever without prior written permission of FLOGEN Stars Outreach.