2016 - Sustainable Industrial Processing Summit & Exhibition
sips2016-LOGO Symposium Banner sips2015-Banner
06 - 10 November 2016, Sanya Marriott Yalong Bay Resort & Spa, Hainan-Island China
More than 520 Abstracts submitted from 80 countries - Please contact us ASAP if you want to update an abstract or a full paper.
Summit
Venue
Information
Sponsorship
Submission
Program
Registration
Instructions
Post Summit
Previous Events
PLENARY LECTURES AND VIP GUESTS
no_photo

Sangmin Choi

Korea Institute of Science and Technology,Department of Mechanical Engineering

Industrial Solids Processing Applications: Particle Reaction Models And Bed Combustion Models
Yagi International Symposium (2nd Intl. Symp. on Sustainable Metals & Alloys Processing)

Back to Plenary Lectures »

Abstract:

Industrial applications for solids processing are commonly associated with the gas-solid particle reactions. Since the overall performance and productivity of the process depend on the treatment of gas-solid reactions, the proper reaction modeling is crucial in constructing an effective bed reactor model. The current study discusses the mathematical modeling procedure of bed type reactors that simplifies the bed structure and encompasses the particle reaction models referring to some industrial cases of solids processing. Regarding the complex nature of the gas-solid particle reaction, various modeling studies have been conducted from the perspective of the single particle. The approaches hitherto proposed can be distinguished by the manner of the reaction progression, as well as whether it gives analytic or numerical solution. Among the models, the shrinking core model and the grain model are the two widely applied concepts. The use of the reaction model in the bed process modeling should be based on the particle structure, reaction kinetics, and simultaneous heat and mass transfer effects. For instance, a discussion can be made about the frequent use of the shrinking core model for coke combustion in the pellet indurator modeling. Since the shrinking core model assumes a nonporous single particle, it may have limitations in representing the reaction progression in a pellet mostly attributed to pellet porosity and the sizes of a pellet and the coke lump. For this case, the grain model would become more advantageous. Based on the discussion about single particle reaction models, the bed process modeling cases are presented. The typical simplifying approach using the porous media approximation and one or two dimensional numerical solution procedure could cover various applications, such as iron ore sintering, iron ore pellet indurator, mass-burn waste incinerator, and blast furnace.

Member Area

LOGIN

Translate site in 50+ languages
Flogen is not responsable for translation
Notebook

<<     May 2024     >>

  • MO
  • TU
  • WE
  • TH
  • FR
  • SA
  • SU
  • 29
  • 30
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9



Sanya Weather


Click Here




SIPS is the flagship event of FLOGEN STAR OUTREACH, a not-for-profit, non-political and all-inclusive science organization. SIPS as well as FLOGEN STARS OUTREACH takes no sides in political, scientific or technological debates. We equally welcome, without reservations, all spectrum of ideas, theories, technologies and related debates. Statements and opinions expressed are those of individuals and/or groups only and do not necessary reflect the opinions of FLOGEN, its sponsors or supporters.

foot
© FLOGEN Star OUTREACH | Home | Contact Us | Privacy Policy | Cancellations/Refund Policy

© Copyright of FLOGEN Stars Outreach Organization: The content of this page including all text and photos are copyright of FLOGEN Stars Outreach and none can be used in their original or in any modified or combined form in any publication, web site or in any other medium whatsoever without prior written permission of FLOGEN Stars Outreach.