2015 - Sustainable Industrial Processing Summit & Exhibition
sips2015-LOGO Symposium Banner sips2015-Banner
4 - 9 October 2015, Cornelia Diamond Golf Resort & Spa, Antalya, Turkey
Symposium
Venue
Information
Sponsorship
Submission
Program
Registration
Instructions
Post Symposium
Previous Events
PLENARY LECTURES AND VIP GUESTS
no_photo

Jan Kratochvil

Czech Technical University

Strain Gradient Model Of Mechanisms Controlling Evolution Of Deformation Band Substructure
Aifantis International Symposium
(2nd Intl. symp. on Multiscale Material Mechanics in the 21st Century)[Dislocation Patterning]


Back to Plenary Lectures »

Abstract:

Deformation bands are the basic microstructural elements in metal single crystals and polycrystals where the dominating deformation mechanism is a dislocation glide. The deformation bands are detected in a form of elongated misoriented domains separated by roughly parallel families of geometrically necessary boundaries. From the continuum mechanics point of view the deformation bands are spontaneous deformation instabilities, Biot (1965). The deformation bands are a consequence of anisotropy of hardening. The anisotropy causes that it is energetically less costly to flow the material through the crystal lattice buckled by the deformation bands with a decreased number of the active slip systems than to flow it through a lattice deformed homogeneously by multislip. In our approach a symmetric double slip model of a plane strain compression, a spontaneous formation of the deformation bands is presented in a variational form suitable for an energetic consideration. We adopt the rigid-plastic, rate-independent approximation, which turns out to be the optimal viewpoint pointing to the essential features of the formation of the deformation bands. A simple version of the model based on the standard hardening rule reveals the conditions for the formation of the deformation bands. It is shown that in the simplified case the predicted bands have extreme properties: the band orientation is perpendicular to the direction of the compression and their width tends to zero. Except for a modification of the hardening rule of the advanced model, which incorporates additionally the higher plastic strain gradients, we follow the classical crystal plasticity framework. The gradients represent hardening caused by the incremental work needed to build-up the boundaries and to overcome the dislocation bowing (Orowan) stress. The proposed model provides a unified interpretation of the band orientation, their width, the misorientation across the band boundaries, their dislocation composition, and the band reorientation occurring at large strains in agreement with observations.

Member Area

SIPS is the flagship event of FLOGEN STAR OUTREACH, a not-for-profit, non-political and all-inclusive science organization. SIPS as well as FLOGEN STARS OUTREACH takes no sides in political, scientific or technological debates. We equally welcome, without reservations, all spectrum of ideas, theories, technologies and related debates. Statements and opinions expressed are those of individuals and/or groups only and do not necessary reflect the opinions of FLOGEN, its sponsors or supporters.


LOGIN

Translate site in 50+ languages
Flogen is not responsable for translation
Notebook

<<     May 2024     >>

  • MO
  • TU
  • WE
  • TH
  • FR
  • SA
  • SU
  • 29
  • 30
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9



[Click to Enlarge]


Antalya Weather
Thursday 02 May 2024
Max: -18°C Day Night
Min: -18°C
H%:
Friday 03 May 2024
Max: -18°C Day Night
Min: -18°C
H%:
Saturday 04 May 2024
Max: -18°C Day Night
Min: -18°C
H%:
Sunday 05 May 2024
Max: -18°C Day Night
Min: -18°C
H%:
Monday 06 May 2024
Max: -18°C Day Night
Min: -18°C
H%:


foot
© FLOGEN Star OUTREACH | Home | Contact Us | Privacy Policy | Cancellations/Refund Policy

© Copyright of FLOGEN Stars Outreach Organization: The content of this page including all text and photos are copyright of FLOGEN Stars Outreach and none can be used in their original or in any modified or combined form in any publication, web site or in any other medium whatsoever without prior written permission of FLOGEN Stars Outreach.